读取二进制文件cifar10实战

本文介绍了如何处理CIFAR10数据集,包括数据集的结构和实战中如何使用TensorFlow读取与解码二进制文件。通过构造文件名队列,进行图片切片和转换,将图像从nchw型转为nhwc型以适应TensorFlow学习。最后,文章提到了批处理队列和会话的开启。
摘要由CSDN通过智能技术生成

1.cifar10数据集:
在这里插入图片描述
在这里插入图片描述
数据 - 一个10000x3072 uint8的numpy数组。阵列的每一行存储32x32彩色图像即每一行存储32323=3072个数字信息。前1024个条目包含红色通道值,下一个1024个绿色,最后1024个蓝色。图像以行优先顺序存储,以便数组的前32个条目是图像第一行的红色通道值。

2.流程及实战
1)构造文件名队列
2)读取与解码
在这里插入图片描述
2.1)图片切片
在这里插入图片描述
第一个[]填起始位置,第二个[]填切多长
2.2)图片的转换
1)图像顺序(由于cifar数据特殊性,所以使得图片解码后为nchw型,必须转为nhwc型才能被tensor学习)

在这里插入图片描述
3)批处理队列
开启会话
手动开启线程
代码实现:

import tensorflow as tf
import  os
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
class Cifar():
    def __init__(self):
        #定义数据,即长宽高通道数,还有种类数,字节数
        #长宽高
        self.height = 32
        self.width = 32
        self.channel = 3

        #定义图像字节数
        self.image = self.channel*self.height*self.width
        self.label = 1
        self.sample = self.image + self.label
    #读取图片处理阶段
    def read_binary(self,file_list):
        #1.加入文件名列表构造文件名队列
        file_queue = tf.train.string_input_producer(file_list)
        #2.读码和解码
        #读码,注意传入总共的字节:目标+字节
        reader = tf.FixedLengthRecordReader(self.sample)
        #读取
        key,value = reader.read(file_queue)
        print(key)
        print(value)
        #解码
        image_decoded = tf.decode_raw(value, tf.uint8)
        #3.进行文件分块以及图片转换操作
        #分块
        #这里就把实际的label和image给弄出来了,定义数据的时候只是定义了一个值可以在后面分片时用
        label = tf.slice(image_decoded,[0],[self.label])
        image = tf.slice(image_decoded,[self.label],[self.image])
        #目标值做好了,而image还是一个需要重新变形的图片字节,所以需要重新对图片塑形,传入的数据就是之前定义的,注意这里是c.w.h
        image_reshaped = tf.reshape(image,[self.channel,self.width,self.height])
        #图片转换
        #运用了转置,且【】【】【】为转置之后的顺序
        image_transposed = tf.transpose(image_reshaped, [1, 2, 0])
        #print(image_transposed)
        #因为解码时候是uint8格式,最后要转换为float32格式
        image_cast = tf.cast(image_transposed,tf.float32)
        #4.批处理:两个值放入,两个值接受
        label_batch,image_batch = tf.train.batch([label,image_cast],capacity=100,batch_size=100,num_threads=1)
        print('label_batch',label_batch)
        print('image_batch', image_batch)
        with tf.Session() as sess:
            #开启线程:
            # 开启线程协调员,对线程进行管理,注意先协调员后线程开启
            coord = tf.train.Coordinator()
            # 开启线程:所有文件名队列才会运作,且必需在会话中开启
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)
            #开启对话:
            print('key:',key.eval())
            print('value',value.eval())
            print('image_transposed',image_transposed.eval())
            print('label_batch', label_batch.eval())
            print('image_batch', image_batch.eval())
            #回收线程
            coord.request_stop()
            coord.join(threads)




if __name__ == "__main__":
    #导入文件列表
    filename_list = os.listdir('./cifar-10-batches-bin')
    #print(filename_list)
    #将路径+文件名进行组合操作,且筛选掉不需要的
    file_list = [os.path.join('./cifar-10-batches-bin',i) for i in filename_list if i[-3:] == 'bin']
    #print(file_list)
    #实例化一个对象将文件传入类
    cifar = Cifar()
    cifar.read_binary(file_list)

结果

Tensor("ReaderReadV2:0", shape=(), dtype=string)
Tensor("ReaderReadV2:1", shape=(), dtype=string)
label_batch Tensor("batch:0", shape=(100, 1), dtype=uint8)
image_batch Tensor("batch:1", shape=(100, 32, 32, 3), dtype=float32)

key: b'./cifar-10-batches-bin\\data_batch_3.bin:0'
value b'\x00\xb7\x9e\xa6\xa7\xa9\xab\xa3\xa3\xa0\xa1\xa1\x9b\x9d\x9f\x9c\x9a\x9c\x96\x92\x96\x97\x97\x99\x9b\x98\x92\x91\x94\x93\x8e\x89\x90}adk\x9b|_^V[ZU]ZYZUJEIMNXWREBDB?;CkUXs\xcb\x95TOX\\ZX[]^VTIJOMJKE==9?K?5<wVR\x84\xe1\xb5ZL[`aXY^[PPNRSLGB<=A:@J7(/\x7fRL\x90\xe2\xcdqMXYSRRMKKHMNQJC<8?D>986(,sKP\x9b\xdf\xdd\x8aU[YPLLGKQQQOQME>;CKC76;0.gJ[\xa1\xe1\xe6\xaalc[RORNKOTTSNHABBHL<78:<AeMZ\x9e\xe3\xe6\xc4qTRMJKMHDPYf]RMF@BK;:G]swlWV\xa2\xde\xdb\xd3\xa1aLKKAKSYjo\x81m_eM>FPATs\x8f\xa6\x94vQT\xa9\xdc\xd4\xdb\xd7\xaa{\x81~U[dyy|\x7fdcmPEN]]\x80\x83\x81vn`@N\xae\xd8\xd1\xdf\xe1\xd4\xb8\xaf\xab\x9e\xa7\x83krnv_^iv|yz\x83\x96\xb1|H4Z?I\xa1\xbf\xb3\xbc\xc3\xbd\xc7\xcf\xd8\xda\xd6\xb9\xa0\x95\x84\x8d\x82r\x98\xb7\xaf\xa4\x8d\x87\x93yc?+dSo\x96\x92}p\x89\xa6\xca\xdf\xe3\xe3\xe2\xdc\xd4\xcc\xc8\xc4\xc7\xc2\xc0\xc1\xbb\xb8\x9f\x86\x8aP=.*\x8b\x8f\x9f\x92{THu\xaf\xc0\xd3\xdc\xd9\xe0\xe3\xdf\xdc\xdc\xda\xdd\xda\xd6\xd3\xcd\xc9\xb2\x86y>"\x1f"\xaa\x94u_^IFc\x9c\xb9\xc8\xd0\xca\xce\xcf\xc7\xd0\xd3\xd3\xd2\xce\xd4\xd3\xd0\xce\xc2\xa0n7/\x1c#xZSV\\TRSiz\x9a\xb3\xb3\xb3\xad\xa0\xad\xb4\xb6\xb9\xbe\xc9\xc6\xc5\xc1\xbf\xbe\x84>F\x1f*nUT[bbed\\[k\x8a\xb4\xbf\xbc\xb0\xae\xad\x9f\x99\xa4\xb2\xb7\xb6\xaf\xac\xbc\x898>#/pOM]bfcYPQW`\x9a\xd0\xdc\xd6\xc9\xbc\xa8\x97\x92\x96\x9b\x9e\x95\x90\x9ee++*7nW^ibbXOECOQm\xbb\xd9\xca\xb8\xb3\xaf\xa6\x93\x8d\x85\x86xcb=#\')4q_ac]XQPFAMUh\x98\xb4\xb2\xaf\xa9\xa3\x9f\x8b\x81udZ@91$+&1iMOUUV^gil\x7f\x90\x8f\x9a\x97\x83\x84\x84\x81\x85xaK:88--8@&4_EPWZp\x8d\xa3\xa7\xa7\xa0\x91~xn[ROID?:<34@10@I)2eWZ]bkuqeaceQNK@;>MLKJH><DC05Q04pYimWXha]WemY`d_OJah`XSB9;:5F<(3vR^[SV^ag`lbe_^v_ZhggdgTF<34G1\'2\x82`TZ^\\WYTZmXb]YvncijhpiZQE:4;1.;\x93mUZ[QTUQchVR[aejg`ZR`TFA>:63;KTyUPYRK_f`veYOW]\\^aTTTMIE?@B@=EITaGSWQJ_jkzjfVTT[tdRdp_KIDGQ[NJ9Klbwvxrjd{\x85\x86~v_Zjuiju~l][cmnk\\rh[\xc7\xc5\xcf\xcf\xd1\xce\xbe\xa6\xb2\xb8\xc0\xbb\xb9\xae\xa8\xa9\xa7\xaa\xb4\xae\xb1\xa8\xa9\xa3\xa4\xbf\xc6\xc1\xbd\xcb\xc8\xbd\xfb\xf8\xf9\xf8\xf9\xfa\xec\xbf\xbc\xba\xbc\xc6\xc6\xbc\xbe\xc2\xbe\xc3\xcb\xbf\xc9\xbe\xbb\xb0\xb2\xe4\xfb\xfa\xfb\xfa\xfa\xfa\xba\xa7\xac\xa5\xa9\xac\xa4\xa8\xa6\xa7\xa7\xa1\xa3\xa5\xa2\xa1\xa4\x9f\x9b\x9e\xa0\xa0\xa2\xa4\xa1\x9b\x9a\x9b\x99\x93\x92\x96\x86opf|omgagfaifefbXSW[[fe_ROQNJJOyhhi\x8cug]imkilnogf[]a_[]VMLIQ]OIM\x86jdr\x8d\x80c\\mstklqncdcfg`ZVPNPLU`H<A\x8cd\\s\x8a\x84f^ijdcc_\\\\Z`ac\\TMJMPNOOF:<}Z]v\x8a\x84hfjg^[ZUY`aa_a]TMKNSPLKI?;sZhx\x87\x83vsuf\\\\]WW_dcb^\\UQPSQGIFHEJr[dt\x84\x82\x83fc]YZZWQP[cpg_[QOOMCIN`imt^Wq\x84\x80\x89xYSX[VUTXhm~jY]MNQKD^v\x88\x8f|}WRp\x84\x80\x83\x87zizvSRUjmpsXPU@DJOX{\x84\x8buhoKQs\x82\x82\x82{\x7f~\x7fukw[P]ZbKHMT[Waqz\xab\x96]EkLLrzvupky~\x82\x81\x85yqp_h]Qq\x81ofeb_emI3lWiym\\Qj{\x83\x87\x8a\x87\x86\x88\x8b\x89\x86\x82\x85\x85\x80xolgOB29/+\x89\x8a\x92\x85nGD}\xab\x92\x87\x8b\x8a\x89\x89\x89\x88\x88\x86\x88\x88\x83\x7f~ylA.!\x1e$,\xa5\x8eqaY<Bp\xa6\xa5\x8d\x81\x80}~}\x83\x84\x83\x82}\x82\x82\x80~pM. \'#3{^\\b\\KQ^rnoqkcbajmptx\x81~}xh]B&;%8y`dliakqg[Xcwspokia_grxvq^YD#3&:z[]onoojb`]Xs\x8c\x89\x88\x84{nbZ[`cbVL-\x1e"/Ataixqog`ZZaZY\x7f\x84xy|}ye[TTR@-\x1a\x1e#2@zmlokf`^SPWY`ku}\x89\x88\x84\x82pfZGA*\x1d\x1b\x1a,4Axc_a`djmikw\x86\x8e\x82{z~{wzr]F3("\x1f\x1d(F9GjU`ddu\x8d\x9e\x9f\x9d\x92\x84\x7fsi]TPJDC?A7.3.3FV<Clchkkmqlc^^bURNB>BQPSTQG?CI?H`BCxexz`^jficqxcimhYTksngbPEEGDVJ:B~^mh\\_ipzs\x80vtnm\x85niwvyxzhYODDU?:B\x8alchjigicj}isnk\x89~syz|\x86\x7fog[MEJ@AJ\x9bychh_dd[ntbcmsxzvohctgXTQKFBI]c\x81a]f^Wksn\x84th^flklm__b]YTMNQPMT[ciQ_c]Uiv{\x8a{vdaai\x81p]o|mYVPT_k^WIYtk\x82\x81\x82{sn\x87\x91\x92\x8a\x82kfv\x81uv\x81\x8axhgoz{yi}se\xcd\xcb\xd6\xd6\xd7\xd4\xc5\xad\xba\xc0\xc8\xc2\xc0\xb4\xaf\xb0\xae\xb1\xbb\xb5\xb7\xae\xaf\xa9\xab\xc7\xce\xc8\xc4\xd1\xcd\xc2\xff\xfc\xfd\xfc\xfd\xfe\xf0\xc4\xc1\xc0\xc1\xca\xc7\xbd\xbf\xc2\xbf\xc4\xcc\xc0\xca\xbe\xbb\xb0\xb3\xe6\xfc\xfc\xfc\xfb\xfa\xfb\xb2\x98\xa0\x9e\x96\x9e\xa1\x9e\x9b\x9c\x9c\x96\x99\x9c\x98\x97\x9c\x97\x93\x97\x97\x95\x97\x99\x99\x96\x95\x97\x95\x90\x8d\x92xZ_TaZaZOUTOYVUVTJEINOYYUKHJHDCHgOSMkXSLQVTRVYZRRHINONOHAC?GSG@EsQORf^MHSYZRTZWLNNQROLGAAD@HS@38}OJV^aPHQRLKMIGGGLMOLG@<@DA@A>24rIO^\\cUOVRJGGCFMOPNONG?>BHD=<A83iJZ^^e`Y`XNKNFCJQQOKIB?ABBA>2=<4eJSU_beFJPLILG@BLTaXSM@A>??:.NYCfOIU]X`S;<DGCFN\\jm\x7fk^`FBHE5?Qz\x81PtNKZ]TV`VEZY9?Ruy{~c\\Z95@B9Wl\x94wOmFK__[\\Y[SROIZJL`^fPE?>A?AHc\xab\xa6c8f>9UXXZYPQPUY]UU\\NWL7MZKB9=Yok<"[7>JHF@^pi^\\\\XZ`b_[^^VKFHC8E3,\x1b"eW]TM7;z\xac\x84g`^ZWVWWUV[XRUWO1/\x1c\x16\x1b0sVLEG4<m\xa7\x9bsZVTQKVXVUOTUVXO7+"!\x1d1T7GMK@FTjbXOFEE@DHLRPURRPHH?+5\x1f3cPVTROX^XMFGMMMKEE@BGNROKAKC$,!6kSMSUWVSRTQCG[UQTQHA>ACDC>B+\x19\x1b)=cTT[XUJGJMTH@\\VDDIONGF?@=.&\x17\x16\x1a+<eXWXUNED>;<<HJMQVSQPLMF:6"\x1b\x1b\x15!+;eHNOMKNNHGKRYHCHPMHKI@2)&#!!\':/@^>KMGOYace\\POGEBA<3*,.51,1,0AL2<bLNQQK@889@F569347B?BFF>8;A7@Y:<iK[cOMQLUP_dELPMEBV\\VPM?79=<OC2:lBONJT[Z_T]SXPJbSP\\\\\\[`OF@8<N81:wQGKRXURGJWCYRId_W^__hdVRLA=C98C\x88aLOPKKLL[]JLTUX\\ZVQL\\RFDC@>;BU\\pLKVPFPWXn\\PIQUSQTJMQMKIBAFGELR[Z=IRNCPWYhYVNMMTiXH\\l^KJDFQ^RM>NgWikog^ThrrmnXSbl_`lxiYX`klj[qgZ\xc5\xbe\xc4\xc6\xc9\xc6\xb7\x9d\xa6\xac\xb4\xb0\xb3\xa8\xa2\xa3\x9f\xa2\xac\xa6\xac\xa6\xa6\xa0\xa2\xbe\xc5\xc0\xbc\xca\xc7\xbc\xfc\xf6\xf4\xf5\xf7\xf8\xea\xbd\xba\xb8\xb9\xc3\xc2\xb8\xba\xbd\xba\xbe\xc6\xbb\xc7\xbd\xba\xae\xb1\xe3\xfa\xfa\xfa\xfa\xfa\xfa'
image_transposed [[[198 194 189]
  [173 168 161]
  [144 141 136]
  ...
  [ 21  24  11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值