题目如下:
一个长度为L(L>=1)的升序序列S,处在第L/2(向下取整)个位置的数称为S的中位数。
如序列s1={ 11,13,15,17,19} 中位数为15。而两个升序序列的中位数是含它们所有元素的升序序列的中位数。例如,若S2={2,4,6,8,20},则s1和s2的中位数是11。
现有两个等长的升序序列A和B,设计一个在时间和空间两方面尽可能高效的算法,找出序列A和B的中位数。
当我看到题目,第一个思路就是用线性表的合并算法先把两个有序序列合并为一个,然后求其中位数,这个方法思路很容易就可以想到,实现算法只需要对线性表合并算法稍微做改进,因为题目是要求找到L/2位置的元素,想到顺序表具有随机存取的特性,自然使用顺序表,然后在合并算法中当合并到第(A_length+B_length)/2个元素时,返回它的元素值,此题目就可以完成了。
但是合并算法的时间复杂度为O(n); 而且要预先分配A和B的空间大小之和的空间,空间复杂度为O(A_length+B_length)。
然而,还有一种在时间和空间上更加高效的算法,接下来我来介绍这个算法。
从题目出发,考虑两个升序序列中位数的位置会出现的范围,比如题目中的这两序列
s1={ 11,13,15,17,19} S2={ 2,4,6,8,20}
很容易得到s1的中位数为 15,s2 的中位数为 6, s1和s2的中位数是11。可以发现11在6和15之间,即:s1和s2的中位数一定出现在s1的中位数和s2的中位数之间。我们将用这个思路对s1和s2划分。
s1和s2的中位数,一定出现在s1的中位数15之前的部分(11,13,15),不会出现在15之后的部分(17,19)。同样,s1和s2的中位数,一定出现在6之后的部分(6,8,20),不会出现在6之前的部分(2,4)。
s1变为{11,13,15},s2变为{6,8,20};
s1的中位数为13,s2的中位数为8
同样的道理我们应该舍弃s1中13以后的部分(15),s2中8以前的部分(6)。
s1变为{11,13},s2变为{8,20};
s1的中位数为11,s2的中位数为8。
这里会出现个问题,如果按照刚才的做法继续会发现
s1变为(11),s2变为(8,20),这里的8到底应不应该出现呢?
s1与s2原本都有偶数个元素 因为s1的中位数11>s2的中位数8,所以合并s1与s2,8只能在11的前面,而11所在的位置不会大于(A_length+B_length)/2,8还在11之前,所以8一定不会是s1和s2的中位数。
所以 s1应该变为{11},s2应该变为{20}
比较 11<20 所以11就是中位数。
算法描述:
1 求A的中位数m1,B的中位数m2.
2 如果m1=m2,则中位数为m1
3 如果m1<m2,舍弃m1前一半,舍弃m2后一半。
4 如果m1>m2,舍弃m1后一半,舍弃m2前一半。
5 舍弃后的序列中不断执行2,3,最后A,B各剩下一个元素,取其中最小的元素就是中位数。
代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
int FindMidNum(int *a,int *b,int n){
int s1=0,d1=n-1,s2=0,d2=n-1;
int m1=0,m2=0;
while(s1!=d1||s2!=d2) {
m1 = (s1+d1)/2;
m2 = (s2+d2)/2;
if(a[m1]==b[m2]) return a[m1];
if(a[m1]<b[m2]) {
if((s1+d1)%2==0) {
s1 = m1;
d2 = m2;
}
else{
s1 = m1+1;
d2 = m2;
}
}
else {
if((s1+d1)%2==0) {
d1 = m1;
s2 = m2;
// printf("s2 = %d\n",s2);
}
else{
d1 = m1;
s2 = m2+1;
// printf("d1 = %d\n",d1);
}
}
}
return a[s1]<b[s2]?a[s1]:b[s2];
}
int main(){
int a[] = {11,13,15,17,19};
int b[] = {2,4,6,8,20};
printf("中位数 = %d",FindMidNum(a,b,5));
}
此算法时间复杂度为O(log2n),空间复杂度为O(1).
测试结果: