机器学习笔记3:Python底层实现朴素贝叶斯

Python实现朴素贝叶斯算法详解
本文介绍了如何使用Python从底层实现朴素贝叶斯算法,包括数据导入、数据集划分、类别标签计数和比例计算。详细讲解了朴素贝叶斯的原理,对比了拉普拉斯修正的方法,并探讨了其在大数据量时的效率问题。同时,文章提供了完整代码的GitHub链接。

历史文章:

1、python底层实现KNN:https://blog.csdn.net/cccccyyyyy12345678/article/details/117911220

2、Python底层实现决策树:https://blog.csdn.net/cccccyyyyy12345678/article/details/118389088


1、导入数据

使用的数据和决策树数据相同,使用贷款数据,详情如下:

导入数据步骤和之前文章提到的KNN,决策树相同,借助python自带的pandas库导入数据。

def read_xlsx(csv_path):
    data = pd.read_excel(csv_path)
    print(data)
    return data

2、划分数据集

def train_test_split(data, test_size=0.2, random_state=None):
    index = data.shape[0]
    # 设置随机种子,当随机种子非空时,将锁定随机数
    if random_state:
        np.random.seed(random_state)
        # 将样
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值