历史文章:
1、python底层实现KNN:https://blog.csdn.net/cccccyyyyy12345678/article/details/117911220
2、Python底层实现决策树:https://blog.csdn.net/cccccyyyyy12345678/article/details/118389088
1、导入数据
使用的数据和决策树数据相同,使用贷款数据,详情如下:
导入数据步骤和之前文章提到的KNN,决策树相同,借助python自带的pandas库导入数据。
def read_xlsx(csv_path):
data = pd.read_excel(csv_path)
print(data)
return data
2、划分数据集
def train_test_split(data, test_size=0.2, random_state=None):
index = data.shape[0]
# 设置随机种子,当随机种子非空时,将锁定随机数
if random_state:
np.random.seed(random_state)
# 将样