给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v1 v2 ... vk }
"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
go语言不熟练,争取多练练!
go代码:
package main
import (
"fmt"
)
var visited [10]bool
//N 是边
var N int
//E 是顶点
var E int
//Graph 是图形结构
type Graph struct {
arcs [10][10]int //临界矩阵
}
func main() {
fmt.Scanln(&N, &E)
G := BuildGraph()
ListDFS(G)
for i := 0; i < N; i++ {
visited[i] = false
}
ListBFS(G)
}
//BuildGraph 创建图
func BuildGraph() Graph {
var n1, n2 int
G := new(Graph)
for i := 0; i < E; i++ {
fmt.Scanln(&n1, &n2)
// fmt.Println("n1=",n1," n2=",n2)
G.arcs[n1][n2] = 1
G.arcs[n2][n1] = 1
}
return *G
}
//ListDFS 外部的DFS函数
func ListDFS(G Graph) {
for i := 0; i < N; i++ {
if visited[i] == false {
fmt.Printf("{")
DFS(G, i)
fmt.Printf(" }\n")
}
}
}
//ListBFS 外部的BFS函数
func ListBFS(G Graph) {
// fmt.Println("BFS")
for i := 0; i < N; i++ {
if visited[i] == false {
fmt.Printf("{")
BFS(G, i)
fmt.Printf(" }\n")
}
}
}
//DFS 内部DFS实现
func DFS(G Graph, v int) {
visited[v] = true
fmt.Printf(" %d", v)
for i := 0; i < N; i++ {
if visited[i] == false && G.arcs[v][i] == 1 {
DFS(G, i)
}
}
}
//BFS 内部的BFS实现
func BFS(G Graph, v int) {
var que [18]int
rear := 0
front := 0
visited[v] = true
que[rear] = v
rear++
for rear > front {
x := que[front]
fmt.Printf(" %d", x)
front++
for i := 0; i < N; i++ {
if visited[i] == false && G.arcs[x][i] == 1 {
que[rear] = i
rear++
visited[i] = true
}
}
}
}
C代码(这份是初学的时候写的,很杂乱):
#include<stdio.h>
#include<stdlib.h>
#define MaxVertexNum 10
typedef int WeightType;//权重
typedef int Vertex;//顶点
typedef struct GNode *PtrToGNode;//定义point to GNode的指针 PtrToGNode
/* 定义邻接矩阵 */
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
WeightType G[MaxVertexNum][MaxVertexNum];
int visit[MaxVertexNum];
};
typedef PtrToGNode MGraph;
/* 定义连接线 */
typedef struct ENode *PtrToENode;
struct ENode{
Vertex V1,V2; /* 有向边<V1,V2> */
};
typedef PtrToENode Edge;
/* 定义队列结构 */
typedef struct queue *PtrToQueue;
struct queue{
int Front;//列队头
int Last;// 列队尾
int Que[MaxVertexNum];//定义队列数组
};
typedef PtrToQueue Queue;
/* 注意这里用Dev写错了内容和返回值没事,pta会不给过 */
//建立邻接矩阵的函数
MGraph CreateGraph(int VertexNum);//初始化图
void InsertEdge(MGraph Graph,Edge E); //插入连接线
MGraph BuildGraph();
//深度优先搜索方法
void DFS(MGraph M,Vertex v);//一次深度优先搜索
void listDFS(MGraph M);//列出所有的深度优先搜索结果
//清空一次搜索结果
void Reset(MGraph M);
//广度优先搜索需要先定义使用队列的基本操作
Queue CreateQueue();//创建队列
void InQueue(Queue q,Vertex v);//入队
int IsEmpty(Queue q);//判断列队是否为空
Vertex OutQueue(Queue q);//出队
//广度优先搜索方法
void BFS(MGraph M,Vertex v);//广度优先搜索
void ListBFS(MGraph M);//列出所有的广度优先搜索结果
//函数的定义
MGraph CreateGraph(int VertexNum)
{
MGraph Graph;//先定义一个指向图的指针
Vertex V,W;//V和W其实是表示一个顶点,并不是单纯的整数 ,虽然表示出来是一回事
int i;
Graph = (MGraph)malloc(sizeof(struct GNode));//申请图的内存空间 然后初始化
Graph->Nv = VertexNum;
Graph->Ne = 0;
for( V = 0; V < VertexNum; V++){//遍历图中的结点,令图中的结点都为0或无穷大,意为没有任何连接
//注意上面这里是VertexNum而不是MaxVertexNum,减少多余操作
for( W = 0; W < VertexNum; W++){
Graph->G[V][W] = 0;/* 或者INFINITY */
}
}
for( i = 0; i < VertexNum; i++) Graph->visit[i] = 0;
return Graph;
}
void InsertEdge(MGraph Graph,Edge E)
{
/* 插入边<V1,V2> */
Graph->G[E->V1][E->V2] = 1; /* 有权重的话要等于E->Weight*/
/* 若是无向图则要反向也插入 */
Graph->G[E->V2][E->V1] = 1; /* 有权重的话要等于E->Weight*/
}
MGraph BuildGraph()
{
MGraph Graph;
Vertex V;
Edge E;
int Nv,i;
scanf("%d",&Nv);//先输入顶点数
Graph = CreateGraph(Nv);
scanf("%d",&(Graph->Ne));//输入边数
if(Graph->Ne != 0){
E = (Edge)malloc(sizeof(struct ENode));//给连接线申请空间,然后用指针的形式传递给下面的函数
for(i=0;i<Graph->Ne;i++){
scanf("%d%d",&E->V1,&E->V2);
InsertEdge(Graph,E);//插入,传两个指针效率怪高
}
}
return Graph;//别完了返回
}
void DFS(MGraph M,Vertex v)
{
M->visit[v] = 1;//标记访问过
printf("%d ", v);//打印访问过的元素
int i;
for(i=0;i<M->Nv;i++){//这里Nv写成了Ne,这种失误一失足成千古恨
if(M->visit[i] == 0 && M->G[v][i] == 1){
DFS(M,i);//当这个数i没有被访问过并且,这个数是有相邻点的就递归 ,典型的DFS,深度
}
}
}
void ListDFS(MGraph M)//用两个函数比较方便和调试
{
int i;
for(i=0;i<M->Nv;i++){
if(M->visit[i] == 0){
printf("{ ");
DFS(M,i);
printf("}\n");
}
}
}
void Reset(MGraph M)//其实这里放在main里也行,visit用完要还原
{
int i;
for(i=0;i<M->Nv;i++) M->visit[i] = 0; //我这里Nv写成Ne找了一个小时,哭了都
}
Queue CreateQueue()//队列的函数,不会去补习(反正我是补习了好久)
{
Queue q;
q = (Queue)malloc(sizeof(struct queue));
q->Front = q->Last = 0;
int i;
for (i = 0; i < MaxVertexNum; i++)
q->Que[i] = -1;
return q;
}
void InQueue(Queue q,Vertex v){
if(q->Last == MaxVertexNum -1) return;
q->Que[q->Last++] = v;
// q->Que[q->Last] = v;
// q->Front++;
return;
}
int OutQueue(Queue q)
{
if(IsEmpty(q) == 1 ) return -1;
Vertex v = q->Que[q->Front++];
// Vertex v = q->Que[q->Front];
// q->Front++;
return v;
}
int IsEmpty(Queue q)
{
if(q->Front == q->Last )
return 1;
else
return 0;
}
void BFS(MGraph M,Vertex v)//广度的精髓就是队列,原理是入队一个就把这列检查一遍有就扔进队里
{
int i;
Queue q;
Vertex temp;
q = CreateQueue();//创建队列
InQueue(q,v);//入队
M->visit[v] = 1;//入队完visit要更新
while(IsEmpty(q) == 0)
{
temp = OutQueue(q);//出队要返还数,检查这个数
printf("%d ",temp);//出队一个输出一个
for(i=0;i<M->Nv;i++){//Nv和Ne不要写反咯
if(M->visit[i] == 0 && M->G[temp][i] == 1){// M->G[i][temp]是无向图所以顺序是可以反着来的
InQueue(q,i);
M->visit[i] = 1;// 入队完visit要更新 !!
}
}
}
}
void ListBFS(MGraph M)//遍历没有被访问的组就访问一下
{
int i;
for(i=0;i<M->Nv;i++){
if(M->visit[i] == 0){
printf("{ ");
BFS(M,i);
printf("}\n");
}
}
}
int main()//简简单单基础题?
{
MGraph G;
G = BuildGraph();
ListDFS(G);
Reset(G);
ListBFS(G);
return 0;
}