唯一分解定理

 

任意一个大于1的正整数都能表示成若干个质数的乘积,且表示的方法是唯一的。换句话说,一个数能被唯一地分解成质因数的乘积。因此这个定理又叫做唯一分解定理。

         C++
#include <iostream>
#include <math.h>
#include <stdlib.h>
using namespace std;
int main()
{       
        unsigned short n;
        int flag = 0;
        cin >> n;
        int prime[32] = {0};
        int num[32] = {0};
        int local = 0;
        unsigned short try_num = 2;
        while (try_num*try_num <= n)//若n小于4,则用此代码时,需要特判
        {
                while (n % try_num == 0)
                {
                        prime[local] = try_num;
                        num[local]++;
                        n /= try_num;
                        flag = 1;
                }
                if (flag)
                {
                        local++;
                        flag = 0;
                }
                try_num++;
        }
        int k = 0;
        while (prime[k])
        {
     if(prime[k+1]!=0)
     {
      if(num[k]>1)
      cout << prime[k] << "^" << num[k] << "*";
      else
      cout << prime[k] << "*";
    
     }
     else
     {
      if(num[k]>1)
      cout << prime[k] << "^" << num[k] ;
      else
      cout << prime[k];
    
     }
                k++;
        }
        if (n != 1)
        cout <<"*"<< n << endl;

   system("pause");
        return 0;
}

            Pscal

var prime,num:array[0..32]of longint;
    n,try_num,local,flag:longint;
procedure init;
  begin
    readln(n);
    fillchar(prime,sizeof(prime),0);
    fillchar(num,sizeof(num),0);
    local:=0;try_num:=2;flag:=0;
  end;
procedure main;
  var k:longint;
   begin
    while try_num*try_num<=n do
      begin
        while n mod try_num=0 do
          begin
            prime[local]:=try_num;
            inc(num[local]);
            n:=n div try_num;
            flag:=1;
          end;
          if flag=1 then
            begin
              inc(local);
              flag:=0;
            end;
          inc(try_num);
      end;
      k:=0;
      while prime[k]<>0 do
        begin
          if prime[k+1]<>0 then
            begin
              if num[k]>1 then
                write(prime[k],'^',num[k],'*')
               else write(prime[k],'*');
            end
          else
            begin
              if num[k]>1 then
                write(prime[k],'^',num[k])
               else write(prime[k]);
            end;
          inc(k);
       end;
      if n<>1 then
        writeln('*',n);
   end;
begin
 assign(input,'1.in');reset(input);
 assign(output,'1.out');rewrite(output);
  init;
  main;
 close(input);close(output);
end.
 

欢迎提出 更快的解决方案

下面的是转自Matrix 67的博客:

现在的问题是,为什么质因数分解的方法是唯一的。这个结论是如此的显然和易于接受,以致于有人会脱口而出:这当然是唯一的,不断使用越来越大的质数去试除,最后得到的肯定是唯一的质因数分解。不可否认,这个算法本身是没有任何问题的。根据合数的定义,试除与分解是一定能不断进行下去的,除非被除数本身变成了一个质数,而此时也标志着算法的结束。问题的关键就在于,这并不能说明原数能唯一地表示成质数的乘积:换一种试除的顺序会不会得出不同的分解方法?万一还有什么别的牛B大法也能用来分解质因数,而且结果与上面得到的完全不一样咋办?上面给出的算法只能说明我们能找出至少一种分解质因数的方法,用这种方法得到的结果是唯一的,但到底还有没有其它偏方秘籍能导出另外的分解方法来,我们就不得而知了。为了真正地证明,分解质因数的方法是唯一的,我们将再次用到反证法。假设存在某些数,它们有至少两种分解方法。那么根据上文提到的“非空正整数集里存在最小的元素”,一定有一个最小的数M,它能用至少两种方法表示成质数的乘积:
   M = P1 * P2 * ... * Pr = Q1 * Q2 * ... * Qs
     下面我们将看到,这种假设会推出一个多么荒谬的结果来。不妨设P1 <= P2 <= ... <= Pr, Q1 <= Q2 <= ... <= Qs。显然,P1是不等于Q1的,不然两边同时约掉它,我们就得到一个更小的有两种分解方法的数。不妨设P1 < Q1,那么我们用P1替换掉等式最右边中的Q1,得到一个比M更小的数T = P1 * Q2 * Q3 * ... * Qs。令M' = M - T,我们得到M'的两种表达:
   M' = (P1 * P2 * ... * Pr) - (P1 * Q2 * ... * Qs) = P1 * (P2 * .. * Pr - Q2 * ... * Qs)   ……   (1)
   M' = (Q1 * Q2 * ... * Qs) - (P1 * Q2 * ... * Qs) = (Q1 - P1) * Q2 * ... * Qs   ………………   (2)
     由于T比M小,因此M'是正整数。从(1)式中我们立即看到,P1是M'的一个质因子。注意到M'比M小,因此它的质因数分解方式应该是唯一的,可知P1也应该出现在表达式(2)中。既然P1比所有的Q都要小,因此它不可能恰好是(2)式中的某个Q,于是只可能被包含在因子(Q1-P1)里。但这就意味着,(Q1-P1)/P1除得尽,也就是说Q1/P1-1是一个整数,这样Q1/P1也必须得是整数。我们立即看出,P1必须也是Q1的一个因子,这与Q1是质数矛盾了。这说明,我们最初的假设是错误的。

     唯一分解定理的一个重要的推论是,如果质数p是ab的因子,那么p或者是a的因子,或者是b的因子。我们刚才在证明过程中也不自觉地用到了这个推论。证明方法很简单,假如a和b里面都不含p,把a和b各自分解开来再乘到一起,我们就得到了数ab的一个没有因子p的分解方式;而按照前面提到的试除法,ab是可以表示成p与另一些质数的乘积的,这违背了唯一分解定理。连续多次使用该推论,我们可以很快将推论推广到多个数的情形。
     事实上,假设这个推论成立,我们也能很快反过来推出唯一分解定理:写出N的两种质因数分解,在前一种分解中任取一个因子,它必然会在后一种分解方法中出现;把它们约掉之后结论继续适用,不断进行该操作直到最终两边都只余下一个1。这一系列操作说明了,两种分解方法实际上是相同的。我们看到,唯一分解定理和它的推论实际上是等价的。如果我们能够绕过唯一分解定理,用另一种方法证出这个推论,我们也就相当于找到了唯一分解定理的另一个证明。而事实上,运用扩展的辗转相除算法,我们可以飞快地完成推论的证明。我们将说明,如果质数p能整除ab,但不整除a,那它一定是b的约数。
     质数p不能整除a,告诉我们a和p互质,于是存在整数k和l使得ka + lp = 1。等式两边同时乘以b,我们有kab + lpb = b。而ab能被p整除,也即存在整数r使得ab=pr。那么,kpr + lpb = p(kr + lb) = b,我们立即看出p是b的一个约数。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值