矩阵笔记1:矩阵分析(第三版)-史荣昌-第一章:线性空间和线性变换


0 笔记说明

参考书籍为:
在这里插入图片描述
本笔记主要是为了方便自己日后复习。由于未学习LaTeX,我会上传教材图片或者手写图片代替部分公式或内容。博客主要分为两部分:【1 书本内容】与【2 听课笔记】,前者为对教材中重要定理、定义的整理,后者为自己在矩阵上课时的笔记的二次书面整理。根据自身学习需要,我可能会增加必要内容。

本篇博客是关于第一章的内容,下面开始即为正文。


1 书本内容

本篇博客将简要地介绍线性空间,所考虑的数域是实数域(记为R)和复数域(记为C),统称数域F。

1.1 线性空间

1、线性空间:设V是一个非空集合,F是一个数域,在集合V的元素之间定义了加法运算,即对于V中任意两个元素α与β,在V中都有唯一的元素v与它们相对应,称之为α与β的和,记为v=α+β,并且加法运算满足下面四条法则:

(1)交换律:α+β=β+α;

(2)结合律:α+(β+γ)=(α+β)+γ;

(3)零元素:在V中有一元素0(称作零元素),对于V中任一元素α都有α+0=α;

(4)负元素:对于V中每一个元素α,都有V中的元素β,使得α+β=0。

上面四条法则中,α、β、γ为V中的任意三个元素,α、β、γ∈V。除此之外,在集合V中的元素与数域F中的数之间还定义了一种运算,叫做数乘,即对于V中任一元素α与F中任一数k,在V中有唯一的一个元素η与它们对应,称为k与α的数乘,记为η=k·α=kα,并且数乘运算满足下面四条法则:

(1)1·α=α;

(2)(kl)α=k(lα);

(3)(k+l)α=kα+lα;

(4)k(α+β)=kα+kβ。

上面四条法则中,k,l为F中的任意两个数,k、l∈F。则称集合V为数域F上的线性空间。

2、矩阵的核空间/零空间:设A为实数域(或复数域)上的m×n阶矩阵,易证:齐次线性方程组Ax=0的所有解(包括零解)的集合构成实数域(或复数域)上的线性空间。此空间为方程组Ax=0的解空间,也称为矩阵A的核空间或零空间,用N(A)表示。

3、矩阵的值域/列空间:设A为实数域(或复数域)上的m×n阶矩阵,x为n维列向量,则m维列向量集合V={y∈Rm(或Cm) I y=Ax,x∈Rn(或Cn),A∈Rm×n(Cm×n)}构成实数域(或复数域)上的线性空间,称为A的列空间或A的值域,用R(A)表示。

4、线性表示/线性组合:设V是数域F上的线性空间,α12,…,αr是V中的任意一组向量(其中r≥1),k1,k2,…,kr是数域F中的一组数。若向量α可以表示成α=k1α1+k2α2+…+krαr,则称α可由α12,…,αr线性表示或线性表出,同时也可以称α是α12,…,αr的线性组合。

5、线性相关/线性无关:设α12,…,αr是线性空间V中的一组向量(其中r≥1)。如果在数域F中有r个不全为零的数k1,k2,…,kr,使得k1α1+k2α2+…+krαr=0,则称α12,…,αr线性相关。如果一组向量α12,…,αr不线性相关,就称为线性无关。换言之,若k1α1+k2α2+…+krαr=0当且仅当k1=k2=…kr=0,便称α12,…,αr线性无关。一组向量要么线性相关,要么线性无关,非此即彼。

6、线性表出唯一定理:设线性空间V中向量组α12,…,αm线性无关,且向量组α12,…,αm,β线性相关,则β可由α12,…,αm线性表出,且表出是唯一的。

1.2 基与坐标、坐标变换

1、基、坐标、维数:设数域F上的线性空间V中有n个线性无关向量α12,…,αn,而且V中任何一个向量α都可由α12,…,αn线性表出:α=k1α1+k2α2+…+knαn,则称α12,…,αn为V的一个基,(k1,k2,…,kn)T为α在基α12,…,αn下的坐标,称V为n维线性空间,并记dimV=n。

2、过渡矩阵:设α12,…,αn与β12,…,βn是V中的任意两个基,它们之间的关系是:
在这里插入图片描述
上图中i=1,2,…,n。将这n个关系式用矩阵记号可以表示成:
在这里插入图片描述
记n阶方阵为P:
在这里插入图片描述
称矩阵P是由基α12,…,αn到基β12,…,βn的过渡矩阵。矩阵P一定是可逆的,所以由基β12,…,βn到基α12,…,αn的过渡矩阵为P-1。可写成(β12,…,βn)=(α12,…,αn)P或者(α12,…,αn)=(β12,…,βn)P-1

3、坐标变换:设ξ∈V,若ξ在基α12,…,αn与β12,…,βn下的坐标分别为(x1,x2,…,xn)T与(y1,y2,…,yn)T,即若有:
在这里插入图片描述
则有:
在这里插入图片描述
其中,矩阵P是由基α12,…,αn到基β12,…,βn的过渡矩阵。称上图的两个公式为坐标变换公式。

4、使用可逆矩阵将旧的一个基变成新的一个基:设α12,…,αn为线性空间V的一个基,A为可逆矩阵,记(α12,…,αn)P为β12,…,βn,即(β12,…,βn)=(α12,…,αn)P,则β12,…,βn也为V的一个基。

1.3 线性子空间

1、线性子空间:设W是数域F上的线性空间V的一个非空子集,若W关于V的加法和数乘运算也构成线性空间,则称W是V的一个线性子空间,简称为子空间,dim W ≤ dim V。

2、平凡子空间:在线性空间V中,由单个零向量“0”构成的集合是一个线性子空间,称为V的零子空间。在线性空间V中,V本身也可看成是一个线性子空间。这两个子空间称为V的平凡子空间,其他子空间称为为非平凡子空间。

3、生成子空间:设α12,…,αs是线性空间V中一组向量,则集合span{α12,…,αs}={k1α1+k2α2+…+ksαs|∀ki∈F}是非空集合,则span{α12,…,αs}是V的线性子空间。称非空子集span{α12,…,αs}是由向量α12,…,αs生成的生成子空间。

4、生成子空间的维数:dim span{α12,…,αs}=rank{α12,…,αs},其中rank{α12,…,αs}是向量组α12,…,αs的秩。向量组α12,…,αs的任何一个极大线性无关组均可作为span{α12,…,αs}的一个基。

5、生成子空间之间的等价:若α12,…,αs与β12,…,βt都是n维向量组,则span{α12,…,αs}=span{β12,…,βt}⇔α12,…,αs与β12,…,βt等价,即α12,…,αs与β12,…,βt可以互相线性表示。

6、交空间与和空间:设V1,V2是线性空间V的两个子空间,命V1∩V2={αlα∈V1且α∈V2},则V1∩V2构成V的线性子空间。称V1∩V2为V1与V2的交空间。命V1+V2={α=α121∈V1且α2∈V2},则V1+V2构成V的线性子空间。称V1+V2为V1与V2的和空间。

7、生成子空间的和:设V1=span{α12,…,αs},V2=span{β12,…,βt},则V1+V2=span{α12,…,αs12,…,βt}。

8、维数公式:设V1与V2是线性空间V的两个子空间,则dimV1+dimV2=dim(V1+V2)+dim(V1∩V2)。

9、直和:如果W1+W2中的任何一个向量均可以唯一分解成W1和W2中的两个向量之和,则称W1+W2为直和,记为W1⊕W2

10、直和的判定:设W1,W2是线性空间V的两个子空间,则下列命题等价:① W1+W2是直和;② 0的分解唯一;③ W1∩W2={0};④ dim(W1+W2)=dim(W1)+dim(W2);⑤ W1,W2的基一起构成W1+W2的基。

11、直和分解与代数补:设W,W1,W2是线性空间V的三个子空间,且W=W1⊕W2,则称W有一个直和分解。特别地,若W=V=W1⊕W2,便称W1和W2是线性空间V的一对互补的子空间,或称W1是W2的代数补子空间,也可称W2是W1的代数补子空间。

12、代数补子空间存在定理:设U是线性空间V的一个子空间,则一定存在U的代数补子空间W,使得V=U⊕W。

1.4 线性映射

1、线性映射:设V1,V2是数域F上的两个线性空间,映射𝒜:V1→V2,如果对于任何两个向量α1,α2∈V1和任何数λ∈F,都有𝒜(α12)=𝒜(α1)+𝒜(α2);𝒜(λα1)=λ𝒜(α1),便称映射𝒜是由定义域V1到像集α2的线性映射。称α1为𝒜(α1)的原像,𝒜(α1)为α1的像。

2、线性映射的性质:① 𝒜(0)=0;② ∀αi∈V,∀ki∈F,有𝒜(Σi∈[1,s]kiαi)=Σi∈[1,s]ki𝒜(αi);③ 设α12,…,αs∈V1,α12,…,αs线性相关,则𝒜(α1),𝒜(α2),…,𝒜(αs)也线性相关。特别要注意,若α12,…,αs∈V1,且线性无关,则𝒜(α1),𝒜(α2),…,𝒜(αs)不一定线性无关。

3、线性映射对应的矩阵:设α12,…,αn是V1的一个基,β12,…,βm是V2的一个基,𝒜是V1→V2的一个线性映射,则:
在这里插入图片描述
记矩阵A为:
在这里插入图片描述
则:𝒜(α12,…,αn)=(β12,…,βm)A,矩阵A称为线性映射𝒜在基(α12,…,αn)与基(β12,…,βm)下的矩阵表示。

4、原像与像的坐标关系:设α12,…,αn是V1的一个基,∀α∈V1,故:
在这里插入图片描述
α的像𝒜(α)∈V2,设β12,…,βm是V2的一个基,则𝒜(α)可写为:
在这里插入图片描述
又因为:
在这里插入图片描述
而上式等于:
在这里插入图片描述
而矩阵A为:
在这里插入图片描述
所以:
在这里插入图片描述
记上式为y=Ax,其中y=(y1,y2,…,ym)T,x=(x1,x2,…,xn)T,【y=Ax】称为线性映射𝒜在给定基(α12,…,αn)与(β12,…,βm)下向量坐标变换公式,即原像与像的坐标关系。

5、矩阵对应的线性映射:设V1的基为α12,…,αn,V2的基为β12,…,βm,给定m×n矩阵A=(aij)m×n,则存在唯一的线性映射𝒜,𝒜在这两个基下的矩阵表示为A。

6、线性映射在不同对基下的矩阵是等价的:设𝒜是V1→V2的一个线性映射,α’1,α’2,…,α’n与α12,…,αn是V1的两个基,由αi到α’i的过渡矩阵为P。设β’1,β’2,…,β’m与β12,…,βm是V2的两个基,由βj到β’j的过渡矩阵为Q。线性映射𝒜在基α12,…,αn与β12,…,βm下的矩阵表示为A,在基α’1,α’2,…,α’n与β’1,β’2,…,β’m下的矩阵表示为B,则B=Q-1·A·P。

7、矩阵等价:设A,B∈Fm×n,若存在Q∈Fm×m,P∈Fn×n,满足B =Q·A·P,则称B与A等价。

8、矩阵与线性映射的关系:任何一个线性映射𝒜:Vn→Vm都有一系列的m×n矩阵表示:A,B,….。这些矩阵之间是互相等价的。互相等价的m×n矩阵代表同一个线性映射。原像α的坐标x=(x1,x2,…,xn)T与像𝒜(α)的坐标y=(y1,y2,…,ym)T之间满足式:y=Ax,这也揭示了m×n矩阵A是Cm→Cn的一个线性映射,它与线性映射𝒜:Vn→Vm是对应的。因此,一般的线性空间Vn与特殊的向量空间Fm同构(后面的1.7节会讨论同构),线性映射𝒜可用矩阵A代表。

1.5 线性映射的值域、核

1、线性映射的值域:设𝒜是线性空间V1到V2的线性映射,命𝒜(V1)={𝒜(α)|∀α∈V1},𝒜(V1)是V2的线性子空间。称𝒜(V1)是线性映射𝒜的值域,记之为R(𝒜),称dim R(𝒜)为𝒜的秩,记之为rank𝒜。

2、线性映射的值域的表示:设𝒜是线性空间V1到V2的线性映射,α12,…,αn是V1的基,β12,…,βm是V2的基。在该对基下的矩阵表示为A=(aij)m×n,则:① R(𝒜)=span{𝒜(α1),𝒜(α2),…,𝒜(αn};② rank 𝒜=rank A。

3、线性映射的核:设𝒜是线性空间V1到V2的线性映射,命𝒜-1(0)={α|𝒜(α)=0,α∈V1}。𝒜-1(0)是V1的线性子空间,称𝒜-1(0)是线性映射𝒜的核子空间,记之为N(𝒜),称dim N(𝒜)为𝒜的零度。若dim N(𝒜)=0,则线性无关向量组α12,…,αr∈V1的像𝒜(α1),𝒜(α2),…,𝒜(αr)∈V2也线性无关。

4、线性映射的零度与秩之和为V1的维数:𝒜是n维线性空间V1到m维线性空间V2的线性映射,则dim N(𝒜)+dim R(𝒜)=n。

5、矩阵的核空间与列空间的秩之和为矩阵的列数:若m×n矩阵A的秩为r,则对于齐次线性方程组Ax=0的解空间/核空间N(A),有dim N(A)=n-r,A的列空间R(A)满足dim R(A)=r,于是dim N(A)+dim R(A)=n。

6、线性映射的值域与矩阵的值域:设𝒜是n维线性空间V1到m维线性空间V2的线性映射,α12,…,αn是V1的一个基,β12,…,βm是V2的一个基。线性映射𝒜在这对基下的矩阵表示是m×n矩阵A=(A1,A2,…,An),其中Ai=(a1i,a2i,…,ami)T是m维列向量,i=1,2,…,n。于是:𝒜(α12,…,αn)=(β12,…,βm)A,因此𝒜(αi)=(β12,…,βm)Ai,i=1,2,…,n。𝒜的值域R(𝒜)=span{𝒜(α1),𝒜(α2),…,𝒜(αn)}=span{(β12,…,βm)A1,(β12,…,βm)A2,…,(β12,…,βm)An},而矩阵A的值域R(A)={y|Ax=y,x∈Rn},若取xi=(0,…,0,1,0,…,0)T,则Axi=Ai,i=1,2,…,n,所以R(A)=span{A1,A2,…,An}。综上所述:R(𝒜)与R(A)的表达式相同,即线性映射𝒜的值域与矩阵A的值域是一致的,只要把A的值域引进基,这样就与𝒜的值域完全相同。

7、线性映射的核与矩阵的核:设𝒜是n维线性空间V1到m维线性空间V2的线性映射,α12,…,αn是V1的一个基,β12,…,βm是V2的一个基。线性映射𝒜在这对基下的矩阵表示是m×n矩阵A,设X∈V1,则X可表示为:
在这里插入图片描述
列向量(x1,x2,…,xn)T是V1中向量X在基α12,…,αn下的坐标。N(𝒜)中的向量X一定满足:
在这里插入图片描述
则有:
在这里插入图片描述
根据β12,…,βm线性无关,得:
在这里插入图片描述
上式就是矩阵A的核(x1,x2,…,xn)T所满足的方程式。由此可见,𝒜的核N(𝒜)中的向量X在基α12,…,αn下的坐标(x1,x2,…,xn)T满足矩阵A的核空间中的向量所满足的方程。因此线性映射𝒜的核与矩阵A的核是一致的,只要把矩阵A的核引进“基”以后就与线性映射𝒜的核完全相同。

1.6 线性变换的矩阵与线性变换的运算

1、线性变换中原像α与像𝒜(α)的坐标变换:若线性映射𝒜是指线性空间V到线性空间V的映射,称这样的𝒜为线性空间V的线性变换。由于线性变换是线性空间V到自身的映射,所以只需取V的一个基α12,…,αn即可。设𝒜是线性空间V的线性变换,α12,…,αn是V的一个基,若:
在这里插入图片描述
所以𝒜在α12,…,αn下的矩阵表示——A是n阶方阵。设:
在这里插入图片描述
若:
在这里插入图片描述
则原像α与像𝒜(α)的坐标变换公式为:
在这里插入图片描述

2、线性变换在不同对基下的矩阵是相似的:设𝒜是V到V的线性变换,α12,…,αn与α’1,α’2,…,α’n是V的两个基。由α12,…,αn到α’1,α’2,…,α’n的过渡矩阵为P,线性变换𝒜在基α12,…,αn下的矩阵表示为A,在基α’1,α’2,…,α’n下的矩阵表示为B,则:B=P-1AP。

3、矩阵相似:设A,B∈Fn×n,若存在P∈Fn×n,满足B=P-1AP,则称B与A相似,记之为B~A。相似有三个性质:① 自反性:A~A;② 对称性:若B~A,则A~B;③ 传递性:若A~B,B~C,则A~C。

4、线性变换的运算:设𝒜,ℬ是线性空间V的两个线性变换,定义它们的乘积𝒜ℬ为𝒜ℬ(α)=𝒜(ℬ(α)),α∈V。定义线性变换的加法(𝒜+ℬ)为(𝒜+ℬ)(α)=𝒜(α)+ℬ(α)。定义数量乘法k𝒜为(k𝒜)(α)=k𝒜(α)。V的线性变换𝒜称为可逆的,如果有V的线性变换ℬ存在,满足𝒜ℬ=ℬ𝒜=E,其中E是恒等变换,这时变换ℬ称为𝒜的逆变换,记为𝒜-1。不难验证,上述定义的𝒜+ℬ,𝒜ℬ,k𝒜与𝒜-1都是线性变换。

5、线性变换的运算对应于矩阵的运算:在n维线性空间中取定一个基后,其上的一个线性变换𝒜就与一个n阶矩阵一一对应,而且这个对应保持在线性变换的运算上。设α12,…,αn是n维线性空间V的一个基,在这个基下,线性变换𝒜对应于一个n阶矩阵A,线性变换ℬ对应于一个n阶矩阵B。这个对应具有以下的几个性质:

(1)线性变换𝒜与ℬ的和𝒜+ℬ对应于矩阵A与B的和A+B;

(2)线性变换𝒜的数量乘积k𝒜对应于矩阵A的数量乘积kA;

(3)线性变换𝒜与ℬ的积𝒜ℬ对应于矩阵A与B的积AB;

(4)若线性变换𝒜可逆,即𝒜-1存在,则𝒜对应的矩阵A可逆,且𝒜的逆变换𝒜-1对应于矩阵A的逆矩阵A-1

1.7 n维线性空间的同构

1、同构映射:V1与V2是两个不同的线性空间,若存在V1到V2上的一个一一对应δ,使得对于所有向量α,β∈V1,数λ∈F都有:

(1)δ(α+β)=δ(α)+δ(β);

(2)δ(λα)=λδ(α)。

则此一一对应δ称为V1到V2的同构映射,称V1与V2是同构的。举个栗子:n维线性空间V取定一组基α12,…,αn后,则V中的向量与它的坐标(x1,x2,…,xn)T之间的一一对应是从V到Fn上的一个同构映射,且数域F上任一个n维线性空间都与n维列向量空间Fn同构。

2、同构映射的基本性质

(1)δ(0)=0,δ(-α)=-δ(α);

(2)δ(k1α1+k2α2+…+ksαs)=k1δ(α1)+k2δ(α2)+…+ksδ(αs);

(3)V中向量组α12,…,αs线性相(无)关⇔像δ(α1),δ(α2),…,δ(αs)线性相(无)关;

(4)如果V1是V的一个子空间,则V1在δ下的像集合δ(V1)={δ(α)|α∈V1}是δ(V)的子空间,并且V1与δ(V1)维数相同。

3、两个线性空间同构则维数相同:数域F上两个有限维线性空间同构⇔这两个线性空间有相同的维数。维数是有限维线性空间唯一的本质特征。举个栗子:根据同构映射的定义,R2×2中矩阵:
在这里插入图片描述
可以看做R4中的向量(α11122122)T

1.8 线性变换的特征值与特征向量

1、线性变换的特征值与特征向量:设𝒜是数域F上的n维线性空间V的线性变换,如果在V中存在一个非零向量α使得𝒜(α)=λ0α,其中λ0∈F,则称λ0是𝒜的一个特征值,称α是𝒜的属于特征值λ0的一个特征向量。从几何上看,变换前后的特征向量仍然共线,或者方向不变(λ0>0),或者方向相反(λ0<0),或者变为零向量(λ0=0)。𝒜对α的作用是将α拉长或缩短λ0倍,这个倍数λ0即为𝒜的一个特征值。

2、矩阵的特征值与特征向量:设A是数域F上的n阶矩阵,λ∈F,矩阵λE-A称为A的特征矩阵,行列式:
在这里插入图片描述
称为A的特征多项式。n次代数方程|λE-A|=0称为A的特征方程,这个方程的根称为A的特征值。以A的特征值λ0代入|λE-A|X=0所得的非零解,称为A的对应于特征值λ0的特征向量。矩阵A的特征多项式在复数范围内有n个根。因此一个n阶方阵有n个特征值(重根应计及重数)。矩阵A的所有特征值的全体称为A的谱,用λ(A)表示。

3、矩阵与线性变换之间的特征值与特征向量的关系:计算线性变换𝒜的特征值和特征向量变成了计算线性变换𝒜在某一个基下的矩阵A的特征值和特征向量。即:

(1)λ0是𝒜的一个特征值⇔λ0是A的一个特征值;

(2)α是𝒜的属于特征值λ0的一个特征向量⇔α的坐标(α12,…,αn)T是A的属于特征值λ0的特征向量。

4、相似矩阵有相同的特征值:线性变换𝒜在不同基下对应的矩阵是相似的,而相似矩阵有相同的特征多项式、特征值、行列式、秩、迹,于是可以将其称为线性变换𝒜的特征多项式、特征值、行列式、秩、迹。矩阵A的特征值的全体称为A的谱记为λ(A),它也可称为线性变换𝒜的谱。

5、相似矩阵之间的特征向量的关系:若η=(x1,x2,…,xn)T是n阶矩阵A的属于特征值λ的特征向量,B=P-1AP,则P-1η是B的属于特征值λ的特征向量。

6、求𝒜的特征向量可以通过𝒜的任何一个矩阵表示的特征向量而得到:设𝒜是线性空间V上的线性变换,α12,…,αn与β12,…,βn是V的两个基。由α12,…,αn到β12,…,βn的过渡矩阵为P,线性变换𝒜在基α12,…,αn下的矩阵表示为A,在基β12,…,βn下的矩阵表示为B,则:B=P-1AP。设A的特征向量(x1,x2,…,xn)T是𝒜的特征向量α在基α12,…,αn下的坐标向量,则有:
在这里插入图片描述
设B的特征向量P-1(x1,x2,…,xn)T是𝒜的特征向量β在基β12,…,βn下的坐标向量,则有:
在这里插入图片描述
上式可化简为:
在这里插入图片描述
因此,求𝒜的特征向量可以通过𝒜的任何一个矩阵表示的特征向量而得到。

7、特征子空间:n阶方阵A有r个特征值(重根应计及重数),对于每一个特征值λi的全部特征向量,这些特征向量加上零向量构成n维向量空间的一个子空间,称为特征子空间,用Vλi表示。r个特征子空间的和是直和,即Vλ1⊕Vλ2⊕…⊕Vλr

8、特征值的代数重复度与几何重复度:n阶方阵A的r个互不相同的特征值为λ12,…,λr,对应的重根数分别为p1,p2,…,pr,则称pi为λi的代数重复度,特征子空间Vλi的维数qi称为λi的几何重复度。矩阵A的任一特征值λi的几何重复度qi不大于它的代数重复度pi

9、A的特征向量有下面两个结论

(1)不同特征值的特征向量之间一定线性无关:设λ12,…,λr是A的r个互不相同的特征值,αi是对应于λi的特征向量,其中i=1,2,…,r,则α12,…,αr线性无关;

(2)不同特征值的特征向量构成的向量组一定是线性无关组:设λ12,…,λr是A的r个互不相同的特征值,qi是λi的几何重复度,而αi1i2,…,αiqi是对应于λi的qi个线性无关的特征向量,则A的所有这些特征向量α1112,…,α1q12122,…,α2q2;…;αr1r2,…,αrqr构成的向量组是线性无关组。

1.9 线性变换的不变子空间

1、不变子空间:设𝒜是线性空间V的线性变换,W是V的子空间,如果对于任意向量α∈W都有𝒜(α)∈W,则称W是𝒜的不变子空间。𝒜可以看做子空间W上的一个线性变换,称为𝒜在W上的限制,记做𝒜lw,而且𝒜lw(α)=𝒜(α),∀α∈W。

2、不变子空间的例子

(1)线性空间V和零子空间都是V的任何一个线性变换的不变子空间;

(2)线性变换𝒜的核N(𝒜)与值域R(𝒜)都是𝒜的不变子空间;

(3)若W是线性变换𝒜的不变子空间,那么𝒜(W)={𝒜(α)|α∈W}也是𝒜的不变子空间,且𝒜(W)⊆W;

(4)设α≠0,且α∈V,那么span{α}是线性变换𝒜的不变子空间⇔α是𝒜的特征向量。

(5)线性变换𝒜的特征子空间Vλ是𝒜的不变子空间。

3、𝒜ℬ=ℬ𝒜的结论:设𝒜与ℬ是V的两个线性变换,而且 𝒜ℬ=ℬ𝒜,则:

(1)𝒜的值域R(𝒜)与核N(𝒜)都是ℬ的不变子空间;

(2)𝒜的特征子空间是ℬ的不变子空间。

4、不变子空间的性质

(1)线性变换𝒜的不变子空间的和与交仍然是𝒜的不变子空间;

(2)设W=span{α12,…,αs},则W是𝒜的不变子空间的充分必要条件是𝒜(αi)∈W,其中1≤i≤s;

(3)V的任何一个子空间都是数乘变换的不变子空间。

5、线性变换𝒜的矩阵表示是准对角形与𝒜的不变子空间之间的关系:设W是n维线性空间V的线性变换𝒜的不变子空间,α12,…,αr是W的一组基,α12,…,αrr+1r+2,…,αn是V的一组基,现求𝒜在基α12,…,αrr+1r+2,…,αn下的矩阵表示。由于𝒜(W)⊆W,故𝒜(α1),𝒜(α2),…,𝒜(αr)是α12,…,αr的线性组合,而𝒜(αr+1),𝒜(αr+2),…,𝒜(αn)是α12,…,αrr+1r+2,…,αn的线性组合,即:
在这里插入图片描述
所以𝒜在α12,…,αrr+1r+2,…,αn下的矩阵表示为:
在这里插入图片描述
可对A进行矩阵分块得:
在这里插入图片描述
可见A是准三角形矩阵。反之,若𝒜在α12,…,αrr+1r+2,…,αn下的矩阵表示为A,则由α12,…,αr生成的子空间是𝒜的不变子空间。

6、𝒜的矩阵表示是准对角形和不变子空间的关系:设𝒜是线性空间V的线性变换,则V可以分解为𝒜的不变子空间的直和V=W1⊕W2⊕…⊕Ws的充分必要条件是𝒜在某组基下的矩阵是准对角矩阵diag{A1,A2,…,As},其中Ai为𝒜|wi在相应基下对应的矩阵。

7、根子空间:设线性空间V的线性变换𝒜的特征多项式为f(λ),f(λ)可分解为一次因式的乘积f(λ)=(λ-λ1)r1·(λ-λ2)r2···(λ-λs)rs,其中ri为正整数,i=1,2,…,s,则线性空间V可以分解成不变子空间的直和:V=Rλ1(𝒜)⊕Rλ2(𝒜)⊕…⊕Rλs(𝒜),其中𝒜的不变子空间Rλi(𝒜)={η|(𝒜-λiE)ri(η)=0,η∈V},称Rλi(𝒜)是𝒜的属于λi的根子空间。根子空间包含对应特征值的特征子空间

1.10 矩阵的相似对角形

1、对于n维线性空间V上的线性变换𝒜,是否存在V的一个基使得𝒜在这个基下的矩阵为对角矩阵?:数域F上的n维线性空间V的线性变换𝒜称为可对角化的,如果V中存在一个基,使得𝒜在这个基下的矩阵为对角矩阵。若n阶矩阵A与对角矩阵相似,则称A可对角化。若线性变换𝒜在基α12,…,αn下的矩阵表示为A,则𝒜(α12,…,αn)=(α12,…,αn)A,则线性变换𝒜可对角化⇔A可对角化。因此只需研究矩阵的可对角化问题即可(后面会给出明确结论)。

2、n阶矩阵A可对角化⇔A有n个线性无关的特征向量:设P-1AP=diag(λ12,…,λn),则λ12,…,λn是A的n个特征值,P的第i个列向量是A的属于λi的特征向量。因此,并不是所有的线性变换都存在一个基,使其在该基下的矩阵表示呈现对角形。

3、n阶矩阵A可对角化⇔A的每一个特征值的几何重复度等于代数重复度

4、若矩阵A的特征根全是单根,则A可对角化

5、A与对角矩阵相似的充要条件:设n阶矩阵A的谱为{λ12,…,λn},特征值λi的代数重复度为pi,其中i=1,2,…,r,则A与对角矩阵相似⇔λi的代数重复度pi=n-rank(λiE-A),其中i=1,2,…,r。理由:由上面第3点得:n阶矩阵A可对角化⇔A的每一个特征值的几何重复度等于代数重复度,而λi的几何重复度qi就是线性齐次方程组(λiE-A)x=0的基础解系向量个数,即λi的几何重复度qi等于n-rank(λiE-A),因此n阶矩阵A可对角化⇔pi=n-rank(λiE-A)=qi

6、可交换AB=BA:若对于A、B∈Cn×n,有AB=BA,便称A与B可交换。

7、矩阵可交换的性质:若A与B可交换,则:

(1)A的任何特征子空间都是B的不变子空间,B的任何特征子空间也是A的不变子空间;

(2)A的任何特征子空间中都有B的特征向量,B的任何特征子空间中也都有A的特征向量;

(3)A与B必有公共的特征向量;

(4)λ12,…,λk是A的k个相异特征值,则A与B至少有k个线性无关的公共特征向量。

8、分块矩阵可对角化的充要条件:设A∈Cn×n,B∈Cm×m,且D为:
在这里插入图片描述
其中右上和左下为零矩阵。则D可以对角化⇔A,B都可以对角化。

9、不同矩阵的同时对角化:设A,B∈Cn×n都可以对角化,则A,B同时对角化⇔AB=BA。同时对角化是指:存在可逆矩阵P,使得P-1AP=diag(λ12,…,λn),且P-1BP=diag(μ12,…,μn)。


2 听课笔记

2.1 线性空间

1、线性空间的性质

(1)加法运算中的零元是唯一的;

(2)对于V中的任意一个元素,其负元是唯一的;

(3)∀α∈V,0·α=0,前一个0是F中的一个数,后一个0为V中的零向量;

(4)∀α∈V,-1·α=-α;

(5)∀k∈F,k·0=0,两个0均为V中的零向量;

(6)k·α=0⇔α=0或者k=0,其中前两个0是V中的零向量,最后一个0为F中的一个数;

(7)α+β=α+γ⇔β=γ;

2、向量组相关/无关判定条件:对于向量组x1,x2,…,xr,若齐次线性方程组k1x1+k2x2+…+krxr=0:① 有非零解,则向量组线性相关;② 只有零解,则向量组线性无关。

3、向量组等价:设向量组Ⅰ={α12,…,αr}与向量组Ⅱ={β12,…,βs}为V中任意两个向量组,若向量组Ⅱ中的任意一个向量βi都可由向量组Ⅰ中的向量线性表示(i=1,2,…,s),则称向量组Ⅱ可由向量组Ⅰ线性表示,形式为:
在这里插入图片描述
若向量组Ⅰ与向量组Ⅱ可由相互表示,则二者等价。

4、极大线性无关组:记向量组Ⅰ={α12,…,αr},共有r个向量,向量组Ⅱ={αi1i2,…,αis}是向量组Ⅰ的一个子集,共有s个向量,且r≥s,若向量组Ⅱ满足下面的【(1)、(2)】或【(1)、(3)】:

(1)无关性:向量组Ⅱ={αi1i2,…,αis}线性无关;

(2)极大性:从向量组Ⅰ中任取一个不在向量组Ⅱ中的向量αk,则αki1i2,…,αis线性相关。

(3)生成性:从向量组Ⅰ中任取一个向量αk,则αki1i2,…,αis线性相关。

则称向量组Ⅱ={αi1i2,…,αis}是向量组Ⅰ={α12,…,αr}的极大线性无关组。

5、根据两个向量组的关系判断其中之一的线性相关性:向量组Ⅰ={α12,…,αr}与向量组Ⅱ={β12,…,βs}是线性空间V中的两个向量组。若:① 向量组Ⅰ可由向量组Ⅱ线性表示;② r>s。则向量组Ⅰ={α12,…,αr}线性相关。下面是证明过程:
在这里插入图片描述
6、上面第5条的推论:向量组Ⅰ={α12,…,αr}与向量组Ⅱ={β12,…,βs}是线性空间V中的两个向量组。若:① 向量组Ⅰ可由向量组Ⅱ线性表示;② 向量组Ⅰ={α12,…,αr}线性无关。则r≤s。

7、同一个向量组的极大线性无关组中的向量个数相同:α12,…,αr是一个向量组,向量组Ⅰ={αi1i2,…,αis}与向量组Ⅱ={αj1j2,…,αjt}是该向量组的两个不同的极大线性无关组。因为:① 向量组Ⅰ中的向量均属于该向量组,而向量组Ⅱ是该向量组的极大线性无关组,因此向量组Ⅰ可由向量组Ⅱ线性表示,又因为向量组Ⅰ是极大线性无关组,所以向量组Ⅰ线性无关,由上面第6条得s≤t;② 向量组Ⅱ中的向量均属于该向量组,而向量组Ⅰ是该向量组的极大线性无关组,因此向量组Ⅱ可由向量组Ⅰ线性表示,又因为向量组Ⅱ是极大线性无关组,所以向量组Ⅱ线性无关,由上面第6条得t≤s。综上,由于t≤s且s≤t,所以s=t,即极大线性无关组中的向量可以不同,但是其中的向量个数是相同的。

8、向量组的秩:向量组的极大线性无关组中的向量个数称为向量组的秩,秩是向量组的内在性质。

2.2 基与坐标、坐标变换

1、维数唯一与坐标唯一:线性空间V中的任意一个极大线性无关组均可称为V的一个基,基中的向量个数称为V的维数,线性空间的维数必然唯一。确定基以后,任意一个在V中的向量在该基下的坐标必然唯一,证明过程如下:
在这里插入图片描述
2、向量与坐标的一一映射:确定一对基后,就将抽象的线性空间V中的向量与数域F上的n维向量建立了一一映射,其中n为V的维数,记f:V→Fn,f将V中的任意一个向量α映射为在基下的坐标,该坐标为n维列向量。该映射为单射也是满射,证明过程如下:
在这里插入图片描述
3、不是所有线性空间均有基、维数:举个栗子,零空间即{0}的维数为0、不存在基;F[x]即参数为x的所有一元多项式构成的空间是无限维的、不存在基。

4、向量与坐标的关系:设β,β12,…,βs均是线性空间V中的向量,α12,…,αn是V的一个基,β,β12,…,βs在该基下的坐标分别为x,x1,x2,…,xs,则有:

(1)β=0⇔x=0;

(2)β=k1β1+k2β2+…+ksβs⇔x=k1x1+k2x2+…+ksxs

(3)β12,…,βs线性相关⇔x1,x2,…,xs线性相关;

(4)β12,…,βs线性无关⇔x1,x2,…,xs线性无关。

5、举例说明有限维线性空间的基与维数

(1)线性空间V=R,数域F=R:则dim(V)=1,∀α∈V,若α≠0,则α为V的一个基。∀x∈V,则有x=(x/a)·a,即x在基α下的坐标为x/a;

(2)C为复数域。线性空间V=C,数域F=R:则dim(V)=2,{1,i}为V的一个基。∀x∈V,则有x=real(x)·1+imag(x)·i,即x在基{1,i}下的坐标为(real(x),imag(x)),其中imag(x)、real(x)分别为x的虚部和实部;

(3)线性空间V=C,数域F=C:则dim(V)=1,∀α∈V,若α≠0,则α为V的一个基。∀x∈V,则有x=(x/a)·a,即x在基α下的坐标为x/a;

(4)Fn[x]指参数为x的所有次数不大于n的一元多项式构成的空间。线性空间V=Fn[x],数域F=R:则dim(V)=n,{1,x,x2,…,xn-1}为V的一个基。∀f(x)∈V,则有f(x)=a0+a1x+a2x2+…+an-1xn-1,即f(x)在基{1,x,x2,…,xn-1}下的坐标为(a0,a1,a2,…,an-1)。

6、线性空间V中的任意一个线性无关组均可扩充为V的一个基:假设抽象线性空间V是n维的,α12,…,αs是线性空间V中一个线性无关组,则必存在αs+1s+2,…,αn,使α12,…,αn成为线性空间V的一个基。

2.3 线性子空间

1、线性子空间的判定定理:设W是数域F上的线性空间V的一个非空子集,若W关于V的加法和数乘运算保持封闭,即:① ∀α,β∈W,都有α+β∈W;∀α∈W,∀λ∈F,都有λα∈W。则称W是V的线性子空间。

2、代数补不唯一:子空间U的代数补不是唯一的。例如,若α1=(1,0,0)T2=(0,1,0)T。显然,U=span{α12}是R3的一个子空间,若令α3=(0,0,1)T,或α4=(0,1,1)T,则span{α3}或span{α4}就是U的两个不同的代数补。

2.4 线性映射

在这里插入图片描述
1、用坐标计算𝒜(α):上图中,𝒜是n维抽象线性空间V1到m维抽象线性空间V2的线性映射,ε12,…,εn是V1的一个基,η12,…,ηm是V2的一个基。线性映射𝒜在这对基下的矩阵表示是m×n阶矩阵A,∀α∈V1,∀β∈V2,设α在基ε12,…,εn下的坐标为x=(x1,x2,…,xn)T∈Fn,设β在基η12,…,ηm下的坐标为y=(y1,y2,…,ym)T∈Fm,若有𝒜(α)=β,则有𝒜(α)=(η12,…,ηm)·y=(ε12,…,εn)·Ax。

2、对于任意一个线性映射,能否选择一对基,使其矩阵表示最简单?:设𝒜是n维线性空间V1到m维线性空间V2的线性映射,设α12,…,αn是V1的一个基,β12,…,βm是V2的一个基,则有𝒜(α12,…,αn)=(β12,…,βm)A,矩阵A称为线性映射𝒜在基(α12,…,αn)与基(β12,…,βm)下的矩阵表示,设rank(A)=r,其中r<min{m,n},则存在m阶可逆矩阵Q以及n阶可逆矩阵P,使Q-1AP=B,其中B为:
在这里插入图片描述
其中左上角为r×r阶单位矩阵,右上角为r×(n-r)阶零矩阵,左下角为(m-r)×r阶零矩阵,右下角为(m-r)×(n-r)阶零矩阵。矩阵B称为矩阵A的等价标准型。将方阵P、Q作为过渡矩阵,可得到V1新的一个基(α’1,α’2,…,α’n)=(α12,…,αn)·P,V2新的一个基(β’1,β’2,…,β’m)=(β12,…,βm)·Q。则有:𝒜(α’1,α’2,…,α’n)=(β’1,β’2,…,β’m)Q-1AP=(β’1,β’2,…,β’m)B。对线性映射𝒜,现在找到了V1、V2的一对基(α’1,α’2,…,α’n)和(β’1,β’2,…,β’m),𝒜在这对基下的矩阵B是最简单的。更进一步地,有:① i=1,2,…,r时,𝒜(α’i)=β’i;② i=r+1,r+2,…,n时,𝒜(α’i)=0;③ R(𝒜)=span{β’1,β’2,…,β’r};④ N(𝒜)=span{α’r+1,α’r+2,…,α’n}。

3、线性变换乘积𝒜ℬ的矩阵:设α12,…,αn是n维线性空间V1的一个基,β12,…,βm是m维线性空间V2的一个基,γ12,…,γk是k维线性空间V3的一个基,ℬ是V1到V2的线性映射,𝒜是V2到V3的线性映射,m×n阶矩阵B为ℬ在基α12,…,αn和基β12,…,βm下的矩阵,k×m阶矩阵A为𝒜在基β12,…,βm和基γ12,…,γk下的矩阵,则有(𝒜ℬ)(α)=𝒜(ℬ(α)),k×n阶矩阵AB为𝒜ℬ在基α12,…,αn和基γ12,…,γk下的矩阵。

2.5 线性映射的值域、核

在这里插入图片描述
1、线性映射的值域与核:上图中,设𝒜是线性空间V1到V2的线性映射,R(𝒜)=𝒜(V1)是线性映射𝒜的值域,N(𝒜)=𝒜-1(0)是线性映射𝒜的核。R(𝒜)是V2的线性子空间,N(𝒜)是V1的线性子空间。

2、线性映射的零度与秩:设𝒜是n维线性空间V1到m维线性空间V2的线性映射,dim R(𝒜)为线性映射𝒜的秩,记之为rank𝒜。dim N(𝒜)为𝒜的零度。A为线性映射𝒜在某对基下的矩阵表示,有以下三个等式:

(1)𝒜的零度等于V1的维数减去矩阵A的秩:dim N(𝒜)=n-rank(A);

(2)矩阵A的秩等于线性映射的秩:rank(A)=rank(𝒜);

(3)𝒜的零度与秩的和等于V1的维数:dim N(𝒜)+rank(𝒜)=n。

3、线性映射是单射/满射的充要条件:设𝒜是n维线性空间V1到m维线性空间V2的线性映射,dim N(𝒜)+rank(𝒜)=n,则有:

(1)𝒜是单射⇔N(𝒜)={0},其中{0}是零空间;

(2)𝒜是满射⇔R(𝒜)=V2

(3)𝒜是一一映射,也就是既是满射又是单射⇔R(𝒜)=V2,且N(𝒜)={0}⇔dim N(𝒜)+rank(𝒜)=n=m。此时𝒜称为同构映射(后面的2.7节会讨论同构)。

4、降维不单,升维不满:设𝒜是n维线性空间V1到m维线性空间V2的线性映射,则:

(1)若n>m,则𝒜一定不是单射;

(2)若n<m,则𝒜一定不是满射。

2.6 线性变换的矩阵与线性变换的运算

1、矩阵等价:如果矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价;如果矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价;如果矩阵A经有限次初等变换变成矩阵B,就称矩阵A与B等价,记作A≌B。矩阵之间的等价关系具有下列性质:

(1)反身性:A≌A;

(2)对称性:若A≌B,则B≌A;

(2)传递性:若A≌B,B≌C,则A≌C。

2、矩阵等价的充要条件:设A与B为m×n矩阵,那么:

(1)A与B行等价⇔存在m阶可逆矩阵P,使PA=B;

(2)A与B列等价⇔存在n阶可逆矩阵Q,使AQ=B;

(3)A与B等价⇔存在m阶可逆矩阵P以及n阶可逆矩阵Q,使PAQ=B。

3、三维空间的旋转变换:设R3是三维空间,i、j、k为R3的一个基,其中i=(1,0,0)T,j=(0,1,0)T,k=(0,0,1)T,∀α∈R3,x、y、z作为三维坐标系的坐标轴,α经过线性变换𝒜后的像为𝒜(α),将α绕k轴旋转θ角度得到𝒜(α),则𝒜(i,j,k)=(i,j,k)·B,其中B为:
在这里插入图片描述

4、三维空间的镜面反射变换:设R3是三维空间,i、j、k为R3的一个基,其中i=(1,0,0)T,j=(0,1,0)T,k=(0,0,1)T,∀α∈R3,x、y、z作为三维坐标系的坐标轴,α经过线性变换𝒜后的像为𝒜(α),𝒜(α)与α关于x、y坐标轴形成的平面对称,则𝒜(i,j,k)=(i,j,k)·B,其中B为:
在这里插入图片描述
5、对于任意一个线性变换,能否选择一个基,使其矩阵表示最简单?:设𝒜是n维线性空间V上的线性变换,设α={(α11,…,α1n1),(α21,…,α2n2),…,(αs1,…,αsns)}是V的一个基,也就是把基α分为了s组,n1+n2+…+ns=n。则:【𝒜在基α下的矩阵表示为准对角矩阵Λ=diag(A1,A2,…,As)】⇔【Wi=span{αi1,…,αini}是𝒜的不变子空间,其中i=1,2,…,s】。证明见下一条。若n1=n2=…=ns=1,且n1+n2+…+ns=n,则s=n。若α12,…,αn是线性空间V的一个基,则【𝒜在基α12,…,αn下的矩阵A为对角阵】⇔【Wi=span{αi}是𝒜的不变子空间,其中i=1,2,…,n,即𝒜(αi)=λi·αi】。也就是说,当选定的一个基正好是𝒜的一组特征向量时,𝒜在这个基下的矩阵最简单,为对角阵Λ=diag(λ12,…,λn),其中λi为𝒜的特征值,可能有重根。

6、第5条的证明,只证明左面能推出右面:由第5条可得已知条件为:𝒜(α)=α·Λ,其中Λ=diag(A1,A2,…,As),α={α12,…,αs},αi={αi1,…,αini},i=1,2,…,s。因此𝒜(α12,…,αs)=(α12,…,αs)·diag(A1,A2,…,As),则𝒜(αi)=αi·Ai,即𝒜(αi1,…,αini)=(αi1,…,αini)·Ai,其中Ai为ni×ni阶方阵。因此𝒜(αij)∈Wi=span{αi1,…,αini},其中i=1,2,…,s,j=1,2,…,ni,即Wi是𝒜的不变子空间,得证。

7、基正好是𝒜的一组特征向量时,𝒜在这个基下的矩阵最简单,为对角阵:设𝒜是n维线性空间V上的线性变换,λ12,…,λs是𝒜的特征值,则:【𝒜在某个基下的矩阵是对角阵】⇔【线性空间V是𝒜的所有特征子空间的直和,即V=Vλ1⊕Vλ2⊕…⊕Vλs】。只证明右面能推出左面:Vλi={αl𝒜(α)=λiα},i=1,2,…,s,Vλi的基为𝒜的对应于特征值λi的特征向量的极大线性无关组,设Vλi的一个基为αi1,…,αiqi,qi为λi的几何重数,有𝒜(αij)=λi·αij,其中i=1,2,…,s,j=1,2,…,qi,则𝒜(αi1,…,αiqi)=(αi1,…,αiqi)·diag(λii,…,λi)=(αi1,…,αiqi)Ai。最后有𝒜(α11,…,α1q121,…,α2q2,…,αs1,…,αsqs)=(α11,…,α1q121,…,α2q2,…,αs1,…,αsqs)diag(A1,A2,…,As),记A=diag(A1,A2,…,As),基为α=(α11,…,α1q121,…,α2q2,…,αs1,…,αsqs),则𝒜在基α下的矩阵为对角阵Λ=A。

2.7 n维线性空间的同构

2.8 线性变换的特征值与特征向量

1、矩阵的特征值与特征向量:设A是n阶矩阵,如果对于数λ和n维非零列向量x有Ax=λx,则称λ为矩阵A的特征值,非零向量x称为矩阵A对应于特征值λ的特征向量。也可写成(A-λE)x=0,这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式|A-λE|=0,即:
在这里插入图片描述
上式是以λ为未知数的一元n次方程,称其为矩阵A的特征方程。其左端|A-λE|是λ的n次多项式,记作f(λ),称f(λ)为矩阵A的特征多项式。A的特征值就是特征方程的解。特征方程在复数范围内恒有解,其个数为方程的次数,其中重根按重数计算,因此n阶矩阵A在复数范围内有n个特征值。

2、特征子空间:𝒜是线性空间V的一个线性变换,λi是𝒜的特征值,则Vλi={αl𝒜(α)=λiα},Vλi是V的线性子空间,称Vλi为𝒜的特征子空间,dim Vλi称为λi的几何重数。注意,任何线性变换都将零向量映射为零向量,所以𝒜(0)=0=λi0,其中0为零向量,因此特征子空间中一定包含零向量。

2.9 线性变换的不变子空间

1、不变子空间的例子:设𝒜是线性空间V的一个线性变换,λi是𝒜的特征值,则V的不变子空间包括:① V本身;② 零空间{0};③ 𝒜的核N(𝒜);④ 𝒜的值域R(𝒜);⑤ 𝒜的特征子空间Vλi

2、不变子空间的判定定理:设𝒜是线性空间V的一个线性变换,W是V的一个子空间,α12,…,αm是W的一个基,若𝒜(αi)∈W,其中i=1,2,…,m,则W是𝒜的不变子空间。

2.10 矩阵的相似对角形


END

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值