贝塞尔曲线扫盲

转载至:http://blog.csdn.net/cdnight/article/details/48468653

贝塞尔曲线扫盲

相信很多同学都知道“贝塞尔曲线”这个词,我们在很多地方都能经常看到。但是,可能并不是每位同学都清楚地知道,到底什么是“贝塞尔曲线”,又是什么特点让它有这么高的知名度。

贝塞尔曲线的数学基础是早在 1912 年就广为人知的伯恩斯坦多项式。但直到 1959 年,当时就职于雪铁龙的法国数学家 Paul de Casteljau 才开始对它进行图形化应用的尝试,并提出了一种数值稳定的 de Casteljau 算法。然而贝塞尔曲线的得名,却是由于 1962 年另一位就职于雷诺的法国工程师 Pierre Bézier 的广泛宣传。他使用这种只需要很少的控制点就能够生成复杂平滑曲线的方法,来辅助汽车车体的工业设计。

正是因为控制简便却具有极强的描述能力,贝塞尔曲线在工业设计领域迅速得到了广泛的应用。不仅如此,在计算机图形学领域,尤其是矢量图形学,贝塞尔曲线也占有重要的地位。今天我们最常见的一些矢量绘图软件,如 Flash、Illustrator、CorelDraw 等,无一例外都提供了绘制贝塞尔曲线的功能。甚至像 Photoshop 这样的位图编辑软件,也把贝塞尔曲线作为仅有的矢量绘制工具(钢笔工具)包含其中。

贝塞尔曲线在 web 开发领域同样占有一席之地。CSS3 新增了 transition-timing-function 属性,它的取值就可以设置为一个三次贝塞尔曲线方程。在此之前,也有不少 JavaScript 动画库使用贝塞尔曲线来实现美观逼真的缓动效果。

下面我们就通过例子来了解一下如何用 de Casteljau 算法绘制一条贝塞尔曲线。

在平面内任选 3 个不共线的点,依次用线段连接。enter image description here

在第一条线段上任选一个点 D。计算该点到线段起点的距离 AD,与该线段总长 AB 的比例。enter image description here

根据上一步得到的比例,从第二条线段上找出对应的点 E,使得 AD:AB= BE:BCenter image description here

连接这两点 DE。enter image description here

从新的线段 DE 上再次找出相同比例的点 F,使得 DF:DE= AD:AB= BE:BCenter image description here

到这里,我们就确定了贝塞尔曲线上的一个点 F。接下来,请稍微回想一下中学所学的极限知识,让选取的点 D 在第一条线段上从起点 A 移动到终点 B,找出所有的贝塞尔曲线上的点 F。所有的点找出来之后,我们也得到了这条贝塞尔曲线。enter image description here

如果你实在想象不出这个过程,没关系,看动画!enter image description here

回过头来看这条贝塞尔曲线,为了确定曲线上的一个点,需要进行两轮取点的操作,因此我们称得到的贝塞尔曲线为二次曲线(这样记忆很直观,但曲线的次数其实是由前面提到的伯恩斯坦多项式决定的)。

当控制点个数为 4 时,情况是怎样的?enter image description here

步骤都是相同的,只不过我们每确定一个贝塞尔曲线上的点,要进行三轮取点操作。如图,AE:AB= BF:BC= CG:CD= EH:EF= FI:FG= HJ:HI,其中点 J 就是最终得到的贝塞尔曲线上的一个点。enter image description here

这样我们得到的是一条三次贝塞尔曲线。enter image description here

看过了二次和三次曲线,更高次的贝塞尔曲线大家应该也知道要怎么画了吧。那么比二次曲线更简单的一次(线性)贝塞尔曲线存在吗?长什么样?根据前面的介绍,只要稍作思考,想必你也能猜出来了。哈!就是一条直线~enter image description here

能画曲线也能画直线,是不是很厉害?要绘制更复杂的曲线,控制点的增加也仅仅是线性的。这一特点使其不光在工业设计领域大展拳脚,就连数学基础不好的人也可以比较容易地掌握,比如大多数平面美术设计师们。enter image description here

上面介绍的内容并不足以展示贝塞尔曲线的真正威力。推广到三维空间的贝塞尔曲面,以及更进一步的非均匀有理 B 样条(NURBS),早已成为当今计算机辅助设计(CAD)的行业标准,不论是我们平常用到的各种产品,还是在电影院看到的精彩大片,都少不了它们的功劳。enter image description here

enter image description here

动态绘制贝塞尔曲线的在线演示

从2阶到7阶的贝赛尔曲线 private static final int MAX_COUNT = 7; // 贝塞尔曲线最大阶数 private static final int REGION_WIDTH = 30; // 合法区域宽度 private static final int FINGER_RECT_SIZE = 60; // 矩形尺寸 private static final int BEZIER_WIDTH = 10; // 贝塞尔曲线线宽 private static final int TANGENT_WIDTH = 6; // 切线线宽 private static final int CONTROL_WIDTH = 12; // 控制点连线线宽 private static final int CONTROL_RADIUS = 12; // 控制点半径 private static final int TEXT_SIZE = 40; // 文字画笔尺寸 private static final int TEXT_HEIGHT = 60; // 文本高度 private static final int RATE = 10; // 移动速率 private static final int HANDLER_WHAT = 100; private static final int FRAME = 1000; // 1000帧 private static final String[] TANGENT_COLORS = {"#7fff00", "#7a67ee", "#ee82ee", "#ffd700", "#1c86ee", "#8b8b00"}; // 切线颜色 private static final int STATE_READY = 0x0001; private static final int STATE_RUNNING = 0x0002; private static final int STATE_STOP = 0x0004; private static final int STATE_TOUCH = 0x0010; private Path mBezierPath = null; // 贝塞尔曲线路径 private Paint mBezierPaint = null; // 贝塞尔曲线画笔 private Paint mMovingPaint = null; // 移动点画笔 private Paint mControlPaint = null; // 控制点画笔 private Paint mTangentPaint = null; // 切线画笔 private Paint mLinePaint = null; // 固定线画笔 private Paint mTextPointPaint = null; // 点画笔 private Paint mTextPaint = null; // 文字画笔 private ArrayList mBezierPoints = null; // 贝塞尔曲线点集 private PointF mBezierPoint = null; // 贝塞尔曲线移动点 private ArrayList mControlPoints = null; // 控制点集 private ArrayList<ArrayList<ArrayList>> mTangentPoints; // 切线点集 private ArrayList<ArrayList> mInstantTangentPoints; private int mR = 0; // 移动速率 private int mRate = RATE; // 速率 private int mState; // 状态 private boolean mLoop = false; // 设置是否循环 private boolean mTangent = true; // 设置是否显示切线 private int mWidth = 0, mHe
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值