Kafka 快速入门

Kafka 概述

Kafka 架构

在这里插入图片描述

搭建 Kafka 伪分布式环境

  • 本文不使用 Kafka 自带的 Zookeeper,而是使用外部的 Zookeeper,所以得先安装好 Zookeeper。Zookeeper 伪分布式安装教程链接

  • 官网下载 Scala 2.11 - kafka_2.11-0.11.0.0.tgz (asc, md5)

  • 开始搭建,类似搭建 Zookeeper 伪分布式环境。

    // 在 Kafka 的 config 中先拷贝三份 server 的配置文件
    cp server.properties server1.properties
    cp server.properties server2.properties
    cp server.properties server3.properties
    
    // server1.properties 配置
    broker.id=1
    delete.topic.enable=true
    listeners=PLAINTEXT://localhost:9092
    log.dirs=/home/mi2/env/kafka/data/broker1
    zookeeper.connect=localhost:2181,localhost:2182,localhost:2183
    
    // server2.properties 配置
    broker.id=2
    delete.topic.enable=true
    listeners=PLAINTEXT://localhost:9093
    log.dirs=/home/mi2/env/kafka/data/broker2
    zookeeper.connect=localhost:2181,localhost:2182,localhost:2183
    
    // server3.properties 配置
    broker.id=3
    delete.topic.enable=true
    listeners=PLAINTEXT://localhost:9094
    log.dirs=/home/mi2/env/kafka/data/broker3
    zookeeper.connect=localhost:2181,localhost:2182,localhost:2183
    
    // 启动 Kafka 集群,分别启动三个 Kafka 节点(需要先启动 Zookeeper 集群),可用 jps 检测是否启动了
    ./kafka-server-start.sh -daemon ../config/server1.properties
    ./kafka-server-start.sh -daemon ../config/server2.properties
    ./kafka-server-start.sh -daemon ../config/server3.properties
    

Kafka 命令行操作

// 创建主题
./kafka-topics.sh --zookeeper localhost:2181 --create --replication-factor 3 --partitions 1 --topic first

// 查看主题
./kafka-topics.sh --zookeeper localhost:2181 --list

// 生产消息和消费消息(两个窗口同时打开)
./kafka-console-producer.sh --broker-list localhost:9092 --topic first
./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic first --from-beginning

// 查看 topic 详情
./kafka-topics.sh --zookeeper localhost:2181 --describe --topic first
Topic:first	PartitionCount:1	ReplicationFactor:3	Configs:
	Topic: first	Partition: 0	Leader: 1	Replicas: 1,2,3	Isr: 1,2,3

// 修改分区数(现在去 data 目录查看 first 主题每个 broker 上都有 2 个分区了)
./kafka-topics.sh  --zookeeper localhost:2181 --alter --topic first --partitions 2

// 删除 topic
./kafka-topics.sh  --zookeeper localhost:2181 --delete --topic first

Kafka 工作流程

在这里插入图片描述

Kafka 文件存储机制

在这里插入图片描述
.index 和 .log 文件以当前 segment 的第一条消息的 offset 命名。
在这里插入图片描述

Kafka 生产者

分区原因

  • 方便在集群中扩展,每个 Partition 可以通过调整以适应它所在的机器,而一个 topic 又可以有多个 Partition 组成,因此整个集群就可以适应任意大小的数据了;
  • 可以提高并发,因为可以以 Partition 为单位读写了。

分区策略

我们需要将 producer 发送的数据封装成一个 ProducerRecord 对象。
在这里插入图片描述

  • 指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
  • 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
  • 既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。

数据可靠性保证

为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到 producer 发送的数据后,都需要向 producer 发送 ack(acknowledgement 确认收到),如果 producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。
在这里插入图片描述

副本数据同步策略

在这里插入图片描述
Kafka 选择了第二种方案,原因如下:

  1. 同样为了容忍 n 台节点的故障,第一种方案需要 2n+1 个副本,而第二种方案只需要 n+1 个副本,而 Kafka 的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。
  2. 虽然第二种方案的网络延迟会比较高,但网络延迟对 Kafka 的影响较小。

ISR

采用第二种方案之后,设想以下情景:leader 收到数据,所有 follower 都开始同步数据,但有一个 follower,因为某种故障,迟迟不能与 leader 进行同步,那 leader 就要一直等下去,直到它完成同步,才能发送 ack。这个问题怎么解决呢?

答:Leader 维护了一个动态的 in-sync replica set (ISR),意为和 leader 保持同步的 follower 集合。当 ISR 中的 follower 完成数据的同步之后,leader 就会给 follower 发送 ack。如果 follower 长 时 间 未 向 leader 同 步 数 据 , 则 该 follower 将 被 踢 出 ISR,该时间阈值由 replica.lag.time.max.ms 参数设定。Leader 发生故障之后,就会从 ISR 中选举新的 leader。

ack 应答机制
对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置。
acks 参数配置:

  • 0:producer 不等待 broker 的 ack,这一操作提供了一个最低的延迟,broker 一接收到还没有写入磁盘就已经返回,当 broker 故障时有可能 丢失数据;
  • 1:producer 等待 broker 的 ack,partition 的 leader 落盘成功后返回 ack,如果在 follower 同步成功之前 leader 故障,那么将会 丢失数据;
  • -1(all):producer 等待 broker 的 ack,partition 的 leader 和 follower 全部落盘成功后才返回 ack。但是如果在 follower 同步完成后,broker 发送 ack 之前,leader 发生故障,那么会造成 数据重复。

故障处理细节
在这里插入图片描述

  • follower 故障
    follower 发生故障后会被临时踢出 ISR,待该 follower 恢复后,follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了。
  • leader 故障
    leader 发生故障之后,会从 ISR 中选出一个新的 leader,之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader 同步数据。

注意!这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

Exactly Once
将服务器的 ACK 级别设置为-1,可以保证 Producer 到 Server 之间不会丢失数据,即 At Least Once 语义。相对的,将服务器 ACK 级别设置为 0,可以保证生产者每条消息只会被发送一次,即 At Most Once 语义。

At Least Once 可以保证数据不丢失,但是不能保证数据不重复;相对的,At Most Once 可以保证数据不重复,但是不能保证数据不丢失。但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即 Exactly Once 语义。在 0.11 版本以前的 Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。

0.11 版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据,Server 端都只会持久化一条。幂等性结合 At Least Once 语义,就构成了 Kafka 的 Exactly Once 语义。即:At Least Once + 幂等性 = Exactly Once。要启用幂等性,只需要将 Producer 的参数中enable.idompotence 设置为 true 即可。

Kafka 的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的 Producer 在初始化的时候会被分配一个 PID,发往同一 Partition 的消息会附带 Sequence Number。而 Broker 端会对<PID, Partition, SeqNumber>做缓存,当具有相同主键的消息提交时,Broker 只会持久化一条。但是 PID 重启就会变化,同时不同的 Partition 也具有不同主键,所以幂等性无法保证跨分区跨会话的 Exactly Once。

Kafka 消费者

消费方式

consumer 采用 pull(拉)模式从 broker 中读取数据。push (推)模式很难适应消费速率不同的消费者,因为消息发送速率是由 broker 决定的。

pull 模式不足之处是,如果 kafka 没有数据,消费者可能会陷入循环中,一直返回空数据。针对这一点,Kafka 的消费者在消费数据时会传入一个时长参数 timeout,如果当前没有数据可供消费,consumer 会等待一段时间之后再返回,这段时长即为 timeout。

分区分配策略

一个 consumer group 中有多个 consumer,一个 topic 有多个 partition,所以必然会涉及到 partition 的分配问题,即确定哪个 partition 由哪个 consumer 来消费。Kafka 有两种分配策略,一是 RoundRobin,一是 Range。

RoundRobin
如果同一消费者组中所有消费者订阅的主题都一样,可以把所有主题的所有分区搞在一起逐个轮询地分配给各个消费者;如果同一消费者组中不同消费者订阅的主题不一样,也是把所有主题所有分区搞在一起逐个轮询地分配给各个消费者(轮询到某个消费者,如果该消费者订阅了该主题就消费该分区,否则往后轮询分配)。
Range
按照主题分,每个主题和订阅了该主题的消费者对应起来,该主题的各个分区平均分给各个消费者(如果三个消费者消费含有 10 个分区的同一个主题,第一个消费者会分配 4 个分区,其他两个消费者分配到 3 个分区,第一个消费者多消费了一个分区,但是当这三个消费者共同消费 100 个分区时,第一个消费者就会比其他两个消费者多消费 100 个分区了,这就是缺点啦)。

注意!消费者个数变化的时候会触发重新分配!

Offset 的维护

待补充

Kafka 高效读写数据

  • 顺序写磁盘
    Kafka 的 producer 生产数据,要写入到 log 文件中,写的过程是一直追加到文件末端,为顺序写。官网有数据表明,同样的磁盘,顺序写能到 600M/s,而随机写只有 100K/s。这与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。
  • 零拷贝
    在这里插入图片描述

Kafka 事务

待补充

参考资料

[1] 尚硅谷 Kafka 教程
[2] Kafka 官方 API(Java 版)
[3] 《Apache Kafka 实战》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值