深度学习及图像
深度学习及图像
Only you, only you!
这个作者很懒,什么都没留下…
展开
-
基于MNIST数据集训练卷积神经网络模型
卷积神经网络全连接网络的局限性对于MNIST 手写数字识别,假如第一个隐层的节点数为500,那么一个全连接层的参数个数为:28×28×1×500+500 ≈ 40万。当图片分辨率进一步提高时,当隐层数量增加时,例如:600 x 600 图像,各隐层节点数分别为300,200和100,则参数个数为:600 x 600 x 300 + 300 x 200 + 200 x 100≈ 1.08亿。...原创 2020-01-14 00:05:01 · 3033 阅读 · 2 评论 -
(中国大学MOOC)《深度学习应用开发-TensorFlow实践》(第8讲---MNIST手写数字识别:多层神经网络与应用)
全连接单隐藏层网络建模实现%matplotlib notebookimport tensorflow as tfimport tensorflow.examples.tutorials.mnist.input_data as input_datafrom time import timeimport matplotlib.pyplot as pltimport numpy a...原创 2020-01-12 00:59:19 · 453 阅读 · 1 评论 -
Python+OpenCV图像处理(第10课---傅里叶变换)
正弦曲线又是由振幅和相位决定的,最终归结到连续周期信号可由振幅和相位确定。时间域和频率域两个角度之间是可以互相转换的,可逆的。傅里叶变换就是得到高频(像素值变化快的那些像素,比如大草原上有一个狮子,狮子和大草原的接触边界)和低频(像素值变换慢的那些像素,比如大草原所有草都是绿色)信息,对低频和高频处理,还可以逆回去(比如高通滤波允许高频通过,低频衰减,然后再逆回图像,边缘保留,细节丢失)。...原创 2020-01-06 11:29:25 · 378 阅读 · 2 评论 -
Python+OpenCV图像处理(第9课---直方图)
一张图像对应的直方图,横坐标是灰度级(比如8位图像,灰度级是0~255),纵坐标表示该灰度级的像素点个数(归一化直方图的话,对应的是该灰度级像素点的频率)。matplotlib.pyplot绘制直方图# -*- coding: utf-8 -*-import cv2import matplotlib.pyplot as pltimg = cv2.imread("C:\\imgs\\l...原创 2020-01-06 09:53:55 · 420 阅读 · 0 评论 -
Python+OpenCV图像处理(第8课---图像轮廓)
轮廓介绍边缘检测出的边缘是不连续的,把边缘连接成整体就是轮廓。前提原始图像必须是二值图像(阈值分割得到)。查找轮廓会修改原始图像(提前备份)。在opencv中要求背景是黑色,对象是白色。编程实现# -*- coding: utf-8 -*-import cv2img = cv2.imread("C:\\imgs\\contours.bmp", flags = cv2.IMR...原创 2020-01-05 14:20:58 · 340 阅读 · 0 评论 -
Python+OpenCV图像处理(第7课---图像金字塔)
向下取样:缩小图像(先高斯滤波,再删除所有偶数行列,缩小为原来的1/4)。向上取样:放大图像(每个方向扩大为原来的2倍,用0填充;使用与向下取样同样的卷积核乘以4,获取新增像素的值)。pyrDown函数# -*- coding: utf-8 -*-import cv2img = cv2.imread("C:\\imgs\\man.bmp", flags = cv2.IMREAD_...原创 2020-01-04 22:45:55 · 219 阅读 · 0 评论 -
Python+OpenCV图像处理(第6课---canny边缘检测)
canny边缘检测原理1、去噪高斯滤波2、梯度sobel算子计算梯度值和梯度方向梯度方向一般和边界垂直;梯度方向归为四大类(水平、垂直、对角线)。3、非极大值抑制遍历图像,去除所有不是边界的点。实现方法是遍历每个像素,判断每个像素是否是周围具有相同梯度方向的像素点中的最大值,若是就是边界,否则不是边界。4、滞后阈值Canny函数使用滞后阈值越小,得到的边界细节信息越多。...原创 2020-01-03 23:07:23 · 264 阅读 · 0 评论 -
Python+OpenCV图像处理(第5课---图像梯度)
sobel算子理论基础下面计算P5点的x方向的梯度值,用P5所在列的右侧列减去左侧列,如果相差比较大,可以认为P5所在列是边界,否则不是边界。(下面是3*3的,Sobel()函数的ksize参数不传默认也是3,传值的话必须是奇数)下面计算P5点的y方向的梯度值,用P5所在行的下侧行减去上侧行,如果相差比较大,可以认为P5所在行是边界,否则不是边界。这就是P5点的sobel算子:so...原创 2020-01-03 20:00:23 · 306 阅读 · 0 评论 -
Python+OpenCV图像处理(第4课---形态学操作)
图像腐蚀erode()主要针对二值图像,前景白色。 用卷积核扫描整张图像每个像素,如果卷积核覆盖区域都是白色点就保持白色,否则变成黑色。# -*- coding: utf-8 -*-import cv2import numpy as npimg = cv2.imread("C:\\imgs\\erode.bmp", cv2.IMREAD_UNCHANGED)kernel = ...原创 2020-01-03 15:17:50 · 262 阅读 · 0 评论 -
Python+OpenCV图像处理(第3课---图像平滑处理)
均值滤波blur()根据核的大小(rowcol),每个像素值就等于以此像素为中心的周围rowcol个像素的平均值。核大一点,显然越平滑、模糊。# -*- coding: utf-8 -*-import cv2img = cv2.imread("C:\\imgs\\lenacolor.png", cv2.IMREAD_UNCHANGED)result = cv2.blur(img...原创 2020-01-03 11:27:42 · 601 阅读 · 0 评论 -
Python+OpenCV图像处理(第2课---图像处理基础)
基础知识图像是由像素构成的,二值图像非0(黑)即1(白),灰度图像(0-255),RGB图像三通道都是0-255(OpenCV中某像素顺序是BGR)。像素读取及修改灰度图import cv2img = cv2.imread("C:\\imgs\\lena256.bmp", cv2.IMREAD_UNCHANGED)print(img[100, 100]) # 73(第100行...原创 2020-01-03 10:24:17 · 519 阅读 · 0 评论 -
Python+OpenCV图像处理(第1课---环境搭建)
环境搭建安装Anaconda下载并安装opencv打开这个控制台,输入pip install 下载到电脑上的opencv包的路径示例图片下载特别说明本文参考网易云课堂《Python+OpenCV图像处理》...原创 2020-01-02 14:50:32 · 392 阅读 · 1 评论 -
(中国大学MOOC)《深度学习应用开发-TensorFlow实践》(第7讲---MNIST手写数字识别问题)
利用单个神经元解决手写数字识别的10分类问题。MNIST 手写数字识别数据集(准备数据)MNIST数据集来自美国国家标准与技术研究所, National Institute of Standardsand Technology (NIST)。数据集由来自 250 个不同人手写的数字构成,其中 50% 是高中学生,50% 来自人口普查局 (the Census Bureau) 的工作人员。训练...原创 2019-11-28 20:27:43 · 662 阅读 · 0 评论 -
(中国大学MOOC)《深度学习应用开发-TensorFlow实践》(第6讲---多变量线性回归 :波士顿房价预测)
准备数据波士顿房价预测数据集下载准备建模多元线性回归模型Y = x 1 x w 1 + x 2 x w 2 + … + x 12 x w 12 + b线性代数基本知识编程演示特此说明本文参考中国大学MOOC官方课程《深度学习应用开发-TensorFlow实践》吴明晖、李卓蓉、金苍宏...原创 2019-11-24 15:42:30 · 556 阅读 · 0 评论 -
(中国大学MOOC)《深度学习应用开发-TensorFlow实践》(第5讲---单变量线性回归 :TensorFlow实战)
监督机器学习基本术语(单变量线性回归为例)特征:输入的{x1, x2, … , xn}标签:对应的y在监督式机器学习中,通过检查多个样本并尝试找出可最大限度地减少损失的模型这一过程称为经验风险最小化。均方误差 ( MSE) 指的是每个样本的平均平方损失:训练模型的迭代方法开始的时候会给w,b赋初始值。然后多轮训练,直到总体损失不再变化或至少变化极其缓慢为止(收敛)。梯度下降...原创 2019-11-21 20:15:33 · 398 阅读 · 0 评论 -
(中国大学MOOC)《深度学习应用开发-TensorFlow实践》(第4讲---TensorFlow编程基础)
在此之前需要自学python3基础TensorFlow入门之Hello Worldimport tensorflow as tf# 创建常量操作,将作为一个节点加入默认计算图中hello = tf.constant("Hello, World!")sess = tf.Session()print(sess.run(hello))TensorFlow计算模型– –计算图Ten...原创 2019-11-20 21:51:57 · 473 阅读 · 0 评论 -
(中国大学MOOC)《深度学习应用开发-TensorFlow实践》(第2讲---深度学习简介及开发环境搭建)
机器学习有监督学习训练数据是带标记的。应用:预测(针对连续数据,如线性回归、神经网络等)、分类(针对离散数据逻辑回归、决策树、KNN、随机森林、支持向量机、朴素贝叶斯、神经网络等)。线性回归举例:每分钟虫鸣声和温度的关系。分类举例:工件是否合格二分类。2. 无监督学习训练数据无标记。其目的是让计算机从数据中抽取其中所包含的模式及规则。比如聚类、关联规则抽取(啤酒和尿布的故事)。...原创 2019-11-17 22:11:26 · 1663 阅读 · 0 评论 -
基于PageRank算法对不同品牌牙膏市场占有率的预测研究
本文详细介绍了PageRank算法的基本思想,具体可以点击下载。原创 2018-11-03 22:32:41 · 329 阅读 · 0 评论 -
人脸检测
配置环境https://blog.csdn.net/ccnuacmhdu/article/details/79757658人脸检测代码参考博主网站:https://blog.csdn.net/real_myth/article/details/52771154/*本程序实现人脸检测,顺便学习了一下sprinf,实现批量操作图像*/#include "opencv2...原创 2018-03-31 22:02:00 · 232 阅读 · 0 评论 -
人脸识别---OpenCV3.3+VS2017环境配置
官网下载安装笔者下的是OpenCV3.3,如下地址: https://opencv.org/opencv-3-3.html 笔者下载的是VS2017,如下地址(网上搜索易破解): https://www.visualstudio.com/zh-hans/downloads/配置OpenCV的环境变量把OpenCV的安装路径下的大致如下目录拷贝到电脑的系统变量下(具体网上易搜索...原创 2018-03-30 15:14:55 · 2406 阅读 · 1 评论