- 博客(8)
- 收藏
- 关注
原创 深度学习 分割损失(Segmentation Loss)在GAN中的实现方式
CNN 被用于图像识别、语音识别等各种场合,在图像识别的比赛中,基于深度学习的方法几乎都以 CNN 为基础。
2025-06-07 17:20:31
986
原创 深度学习 CycleGAN的实现
式(6.3)中有 αv 这一项。在物体不受任何力时,该项承担使物体逐渐减速的任务(α 设定为 0.9 之类的值),对应物理上的地面摩擦或空气阻力。下面是 Momentum 的代码实现实例变量 v 会保存物体的速度。初始化时,v 中什么都不保存,但当第一次调用 update() 时,v 会以字典型变量的形式保存与参数结构相同的数据。
2025-05-31 20:38:10
748
原创 深度学习+文献综述
函数 numerical_diff(f, x) 的名称来源于数值微分的英文 numerical differentiation。这个函数有两个参数,即“函数 f”和“传给函数 f 的参数 x”。乍一看这个实现没有问题,但是实际上这段代码有两处需要改进的地方。(1)因为想把尽可能小的值赋给 h(可以话,想让 h 无限接近 0),所以 h 使用了 10e-50(有 50 个连续的 0 的“0.00 . . . 1”)这个微小值。但是,这样反而产生了舍入误差。
2025-05-17 15:01:42
543
原创 技术学习python+神经网络+损失函数
模块的命名一定要符合标识符命名规则test(5,6)注意:若调用相同的模块,第二个会覆盖第一个。即使用第二个模块。
2025-05-11 16:31:24
857
原创 Diffusion Model在医学图像的潜力,与GAN的优缺点
一、核心原理前向扩散过程(Forward Process)逐步加噪:对输入数据(如图像)逐步添加高斯噪声,使其逐渐转化为纯噪声。马尔可夫链建模:每一步噪声添加仅依赖前一步状态,最终数据分布趋近于高斯分布。数学表达2.反向去噪过程(Reverse Process)噪声预测与去除:训练神经网络(如UNet)预测每一步的噪声分量,逐步去除噪声恢复数据。参数化建模:反向过程建模为条件高斯分布:3.训练目标噪声预测损失:最小化预测噪声与真实噪声的均方误差(MSE):二、模型特点生成质量高。
2025-04-27 17:00:25
830
原创 第二周学习医学图像分析+第二周python技术学习
脑小血管病(CSVD)是一种严重危害人类健康的常见疾病,基于传统的成像 方式精确诊断CSVD仍具有一定局限性,为了取代主观和费力的图像分割和视觉 评级方法,应用深度学习算法自动扫描和提取CSVD影像学标志物愈发成为主流 趋势,这些标志物包括腔隙 (LIs)、血管周围间隙 (PVS)、白质高信号(WMH)、 脑微出血(CMBs)、近期皮层下脑梗死(RSSI),提取出的影像学标志物可与临床风 险因素特异结合进行病因分析。此外,总CSVD负荷评分近年来也被认为是引发 卒中的重要预测因子。
2025-04-27 16:25:27
675
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人