题意:有n个队伍比赛,给出n个队伍赢的次数和输的次数,然后再输入每个队伍还需要的比赛次数,确定所有可能得冠军的球队(获胜场数最多的得冠军,可以并列)
思路:假设a可以拿冠军,先求出a获胜的总次数tot,把每两个队伍的比赛(u,v)看成节点,从源点S连接一条弧到比赛节点,容量为比赛次数(注意排除0次比赛),然后把比赛(u,v)分别连接一条弧到到u,v,容量为 tot - win(u)和 tot - win(v),然后把每个队伍节点连接到汇点T,容量无限大,再求最大流,如果S出发的每条弧流量的是满的,说明在a在剩下比赛的全胜的情况下,其他的队伍获胜次数不超过 tot 的情况下,比赛可以打完,a可以拿冠军,否则在限制其他队伍获胜次数下比赛打不完,a不能拿冠军。
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=1000;
const int inf=1e9;
struct Edge
{
int from,to,cap,flow;
};
struct Dinic
{
int n,m,s,t;
vector<Edge>edges;
vector<int>G[maxn];
bool vis[maxn];
int d[maxn],cur[maxn];
void init(int n)
{
this->n=n;
for(int i=0;i<n;i++)
G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap)
{
edges.push_back((Edge){from,to,cap,0});
edges.push_back((Edge){to,from,0,0});
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool bfs()
{
memset(vis,0,sizeof(vis));
queue<int>Q;
Q.push(s);
d[s]=0;
vis[s]=1;
while(!Q.empty())
{
int x=Q.front();Q.pop();
for(int i=0;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
vis[e.to]=1;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x,int a)
{
if(x==t||a==0)return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
{
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0)break;
}
}
return flow;
}
int Maxflow(int s,int t)
{
this->s=s,this->t=t;
int flow=0;
while(bfs())
{
memset(cur,0,sizeof(cur));
flow+=dfs(s,inf);
}
}
int check()
{
int flag=1;
for(int i=0;i<G[0].size();i++)
if(edges[G[0][i]].cap>edges[G[0][i]].flow)
flag=0;
return flag;
}
}solver;
int win[30],lose[30],cont[30][30];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
vector<int>ans;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d",&win[i],&lose[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&cont[i][j]);
for(int i=1;i<=n;i++)
{
int tot=0;
for(int j=1;j<=n;j++)
tot+=cont[i][j];
tot+=win[i];
int flag=1;
for(int j=1;j<=n;j++)
if(j!=i&&tot-win[j]<0)//已经有队伍获胜次数超过了tot,i不能拿冠军
flag=0;
if(!flag)
continue;
solver.init(maxn);
int res=n;
for(int j=1;j<n;j++)
for(int k=j+1;k<=n;k++)
{
if(j==i||k==i||!cont[j][k])//剩下的比赛次数不能为0
continue;
solver.AddEdge(0,++res,cont[j][k]);
solver.AddEdge(res,j,inf);
solver.AddEdge(res,k,inf);
}
res++;
for(int j=1;j<=n;j++)
if(j!=i)
solver.AddEdge(j,res,tot-win[j]);
solver.Maxflow(0,res);
if(solver.check())
ans.push_back(i);
}
int len=ans.size();
for(int i=0;i<len-1;i++)
printf("%d ",ans[i]);
printf("%d\n",ans[len-1]);
}
}