hdu 6331 Walking Plan 最短路dp

hdu 6331

多校三第M题,题意是给你n个点,m条带权的有向边,有q个询问,每次询问 s t k 表示从 s 到 t 至少要走 k 次的最短路。

思路:设d1[ k ][ i ][ j ]为从 i 到 j 走了k步的最短路,那么转移方程很简单就是 d1[ k ][ i ][ j ]=min( d1[ k-1 ][ i ][ p ]+g[ p ][ j ] ),但是k最大有1e4,复杂度1e4*n^3,太大,得知n最大为50,那么任意两点最短路走过的边的次数肯定不超过50,于是可以分块,将1e4分为100块,每块为100,设d2[ k ][ i ][ j ]为恰好走了k百步从 i 到 j 的最短路,显然d2[ k ][ i ][ j ]=min( d2[ k-1 ][ i ][ p ]+d1[100][ p ][ j ] )  ,设A=k%100,B=k/100,那答案就是min( d1[A][ s ][ i ]+d2[ B ][ i ][ t ]) 吗,显然不是,有没有可能从 s 到 t 走了100多步比走100步更短了,完全有可能,因此于是排除情况,设d3[ k ][ i ][ j ]为至少走了k百步从 i 到 j 的最短路,再设d[ i ][ j ],为任意两点的最短路,先用弗洛伊德算法搞定 d 数组,显然,d3[ k ][ i ][ j ]=min( d2[ k ][ i ][ p ]+d[ p ][ j ] ),那么就搞定这题啦。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int inf=1e8;
const int N=55,M=105;
int d1[M][N][N],d2[M][N][N],d3[M][N][N];
int n,d[N][N],g[N][N];
void ss(int a[][N],int b[][N],int c[][N])
{
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	{
		c[i][j]=inf;
		for(int k=1;k<=n;k++)
		c[i][j]=min(c[i][j],a[i][k]+b[k][j]);
	}
}
void floyd()
{
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	d[i][j]=i==j?0:g[i][j];	//初始化d 
	
	for(int k=1;k<=n;k++)
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		int m,u,v,w,q;
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		g[i][j]=inf;
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d%d",&u,&v,&w);
			g[u][v]=min(g[u][v],w);//可能有重边 
		}
		for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		{
			d1[0][i][j]=d2[0][i][j]=i==j?0:inf;	
			for(int k=0;k<M;k++)
			d3[k][i][j]=inf;
		}
		
		for(int i=1;i<M;i++)
		ss(d1[i-1],g,d1[i]);//由只走i-1次的任意两点最短路推走i次的任意两点的最短路 
		
		for(int i=1;i<M;i++)
		ss(d2[i-1],d1[100],d2[i]);//同递推 
			
		floyd();//弗洛伊德算法求任意两点的最短路 

		for(int x=0;x<M;x++)//刚好走100步从u到v的最短路不一定是最优 	
		ss(d2[x],d,d3[x]);
		
		scanf("%d",&q);
		while(q--)
		{
			scanf("%d%d%d",&u,&v,&w);
			int A=w%100,B=w/100;
			int ans=inf;
			for(int i=1;i<=n;i++)
			ans=min(ans,d1[A][u][i]+d3[B][i][v]);
			printf("%d\n",ans==inf?-1:ans);
		}
	}
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙橘子猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值