【HDU 6331】Walking Plan(分块 + 动态规划)

题目链接:【HDU 6331】Walking Plan

题目大意:给定一张 n n 个点,m 条边的加权有向图,有 q q 次询问,每次询问从点 u 出发经过至少 k k 条边走到点 v 的最短路是多少。 (n50,m10000,q100000) ( n ≤ 50 , m ≤ 10000 , q ≤ 100000 )

首先,我们可以想到倍增。

sp[i][j] s p [ i ] [ j ] 表示 i i 点到 j 点的最短路。
dp0[k][i][j] d p 0 [ k ] [ i ] [ j ] 表示从 i i 点出发经过恰好 2k 条边走到 j j 点的最短路。
dp1[k][i][j] 表示从 i i 点出发经过至少 2k 条边走到 j j 点的最短路。

状态转移方程如下:


dp0[k][i][j]=minl=1ndp0[k1][i][l]+dp0[k1][l][j]

dp1[k][i][j]=minl=1ndp0[k][i][l]+sp[l][j] d p 1 [ k ] [ i ] [ j ] = min l = 1 n d p 0 [ k ] [ i ] [ l ] + s p [ l ] [ j ]


计算 dp d p 值的时间复杂度为 Θ(log2m×n3) Θ ( log 2 ⁡ m × n 3 )
对于每次询问,我们使用倍增的方法,可以在 Θ(q×log2m×n3) Θ ( q × log 2 ⁡ m × n 3 ) 时间内求出答案。

我们发现这样预处理的复杂度十分优秀,但是询问的复杂度会过高,会 TLE T L E 。而询问复杂度高的原因是复杂度中的 n3 n 3 。我们思考如何将 n3 n 3 优化到 n2 n 2 ,甚至 n n 。这是,我们就不能用类似计算 dp 的方法计算答案了,而是要快速的找到一个中介点,然后用已有的 dp d p 值更新答案。

于是,我们考虑分块。

d[i][j] d [ i ] [ j ] 表示 i i 点到 j 点的边的长度, M=m M = m
dp0[k][i][j] d p 0 [ k ] [ i ] [ j ] 表示从 i i 点出发经过恰好 k 条边走到 j j 点的最短路 (kM)
dp1[k][i][j] d p 1 [ k ] [ i ] [ j ] 表示从 i i 点出发经过恰好 Mk 条边走到 j j 点的最短路 (kmM)
dp2[k][i][j] d p 2 [ k ] [ i ] [ j ] 表示从 i i 点出发经过至少 k 条边走到 j j 点的最短路 (kM)

状态转移方程如下:


dp0[k][i][j]=minl=1ndp0[k1][i][l]+d[l][j] d p 0 [ k ] [ i ] [ j ] = min l = 1 n d p 0 [ k − 1 ] [ i ] [ l ] + d [ l ] [ j ]

dp1[k][i][j]=minl=1ndp1[k1][i][l]+dp0[100][l][j] d p 1 [ k ] [ i ] [ j ] = min l = 1 n d p 1 [ k − 1 ] [ i ] [ l ] + d p 0 [ 100 ] [ l ] [ j ]

dp2[k][i][j]=minl=1ndp0[k][i][l]+sp[l][j] d p 2 [ k ] [ i ] [ j ] = min l = 1 n d p 0 [ k ] [ i ] [ l ] + s p [ l ] [ j ]


这样,预处理的时间复杂度是 Θ(Mn3) Θ ( M n 3 )

对于每个询问,我们枚举中间点 i i ,最小的 dp1[kM][u][i]+dp2[kmodM][i][v] 即是答案。时间复杂度 Θ(q×n) Θ ( q × n )

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn = 55;
int T, n, m, q;
int d[maxn][maxn];
int dp[105][maxn][maxn];
int dp1[105][maxn][maxn];
int dp2[105][maxn][maxn];
int main() {
    scanf("%d", &T);
    while (T--) {
        scanf("%d %d", &n, &m);
        memset(d, 0x3f, sizeof(d));
        for (int u, v, w, i = 1; i <= m; i++) {
            scanf("%d %d %d", &u, &v, &w);
            d[u][v] = min(d[u][v], w);
        }
        memset(dp, 0x3f, sizeof(dp));
        for (int i = 1; i <= n; i++) {
            dp[0][i][i] = 0;
        }
        for (int k = 1; k <= 100; k++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    for (int l = 1; l <= n; l++) {
                        dp[k][i][j] = min(dp[k][i][j], dp[k - 1][i][l] + d[l][j]);
                    }
                }
            }
        }
        memset(dp1, 0x3f, sizeof(dp1));
        for (int i = 1; i <= n; i++) {
            dp1[0][i][i] = 0;
        }
        for (int k = 1; k <= 100; k++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    for (int l = 1; l <= n; l++) {
                        dp1[k][i][j] = min(dp1[k][i][j], dp1[k - 1][i][l] + dp[100][l][j]);
                    }
                }
            }
        }
        for (int i = 1; i <= n; i++) {
            d[i][i] = 0;
        }
        for (int k = 1; k <= n; k++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
                }
            }
        }
        memset(dp2, 0x3f, sizeof(dp2));
        for (int k = 0; k <= 100; k++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    for (int l = 1; l <= n; l++) {
                        dp2[k][i][j] = min(dp2[k][i][j], dp[k][i][l] + d[l][j]);
                    }
                }
            }
        }
        scanf("%d", &q);
        int u, v, k;
        while (q--) {
            scanf("%d %d %d", &u, &v, &k);
            int id1 = k / 100, id2 = k % 100;
            int ans = 0x3f3f3f3f;
            for (int i = 1; i <= n; i++) {
                ans = min(ans, dp1[id1][u][i] + dp2[id2][i][v]);
            }
            printf("%d\n", ans == 0x3f3f3f3f ? -1 : ans);
        }
    }
    return 0;
}
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值