这题可以这样来求,枚举所有w,求出所有以该w为左下角的矩形个数最后相加即可,经过分析,每一行从右到左遍历大概可以分三类情况。
第一类
如果第i个w的高度h[ i ](由w叠成的高度)高于第h[ i+1 ],那么d[ i ]=d[ i+1 ]+h[ i ]。
第二类
假设用一个单调队列从右往左维护递增的h[ i ],单调队列的头元素是高度最低的下标,从单调队列找到第一个高度小于h[ i ]的下标 j ,那么这种情况显然d[ i ]=d[ j ]+h[ i ]*( j - i ),然后再将h[ i ]插进单调队列。//第一类情况其实实质上等于第二类
第三类
从第一个表看到,队列中没有高度小于h[ i ]的,这就不好搞了,那么我再借助一个单调队列,维护高度非严格递减的下标,头元素是第一个有高度的w的下标,我们先从第二个队列找到第一个 j(就是头元素) ,这次我们要先把 h[ i ]插进第二个单调队列,然后显然d[ i ]=队列尾元素高度*(头元素下标 - 尾元素下标+1)。
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=2005;
int h[maxn],q[maxn],q2[maxn];
ll d[maxn];
int n,m;
char s[maxn];
int main()
{
while(~scanf("%d%d",&n,&m))
{
memset(h,0,sizeof(h));
ll ans=0;
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
int rear=0,front=1;
int rear2=0,front2=1;
d[m+1]=0;
for(int j=m;j;j--)
if(s[j]=='w')
{
h[j]++;
while(front<=rear&&h[q[rear]]>h[j])//递增单调队列
rear--;
if(h[j]<=h[q2[rear2]]||front2>rear2)//递减单调队列
q2[++rear2]=j;//第二个队列先插入
if(h[j]>=h[j+1])
d[j]=d[j+1]+h[j];
else
{
if(front<=rear)
{
d[j]=d[q[rear]];
d[j]+=ll(1)*(q[rear]-j)*h[j];
}
else
d[j]=ll(1)*(q2[front2]-q2[rear2]+1)*h[q2[rear2]];
}
ans+=d[j];
q[++rear]=j;//第一个队列后插入
}
else
h[j]=d[j]=rear=rear2=0;
}
printf("%lld\n",ans);
}
}