fzu 2190 非提的救赎 单调队列

fzu 2190

这题可以这样来求,枚举所有w,求出所有以该w为左下角的矩形个数最后相加即可,经过分析,每一行从右到左遍历大概可以分三类情况。

第一类   

如果第i个w的高度h[ i ](由w叠成的高度)高于第h[ i+1 ],那么d[ i ]=d[ i+1 ]+h[ i ]。

第二类

假设用一个单调队列从右往左维护递增的h[ i ],单调队列的头元素是高度最低的下标,从单调队列找到第一个高度小于h[ i ]的下标 j ,那么这种情况显然d[ i ]=d[ j ]+h[ i ]*( j - i ),然后再将h[ i ]插进单调队列。//第一类情况其实实质上等于第二类

第三类

                               

从第一个表看到,队列中没有高度小于h[ i ]的,这就不好搞了,那么我再借助一个单调队列,维护高度非严格递减的下标,头元素是第一个有高度的w的下标,我们先从第二个队列找到第一个 j(就是头元素) ,这次我们要先把 h[ i ]插进第二个单调队列,然后显然d[ i ]=队列尾元素高度*(头元素下标 - 尾元素下标+1)。

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=2005;
int h[maxn],q[maxn],q2[maxn];
ll d[maxn];
int n,m;
char s[maxn];
int main()
{
	while(~scanf("%d%d",&n,&m))
	{
		memset(h,0,sizeof(h));
		ll ans=0;
		for(int i=1;i<=n;i++)
		{
			scanf("%s",s+1);
			int rear=0,front=1;
			int rear2=0,front2=1;
			d[m+1]=0;
			for(int j=m;j;j--)
			if(s[j]=='w')
			{
				h[j]++;
				while(front<=rear&&h[q[rear]]>h[j])//递增单调队列 
				rear--;
				
				if(h[j]<=h[q2[rear2]]||front2>rear2)//递减单调队列 
				q2[++rear2]=j;//第二个队列先插入 
				
				if(h[j]>=h[j+1])
				d[j]=d[j+1]+h[j];
				else
				{
					if(front<=rear)
					{
						d[j]=d[q[rear]];
						d[j]+=ll(1)*(q[rear]-j)*h[j];
					}
					else
					d[j]=ll(1)*(q2[front2]-q2[rear2]+1)*h[q2[rear2]];
				}
				ans+=d[j];
				q[++rear]=j;//第一个队列后插入 
			}
			else
			h[j]=d[j]=rear=rear2=0;
		}	
		printf("%lld\n",ans);	
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙橘子猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值