洛谷 P3768 简单的数学题 杜教筛

P3768

虽然刷数论老是把智商刷掉线,但是比起上百行代码的数据结构,我还是更喜欢数论....

我们要求的是这个:

                                                 ans=\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)

我们干脆枚举gcd的值吧:

                                                 ans=\sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{n}ij[gcd(i,j)=d]

枚举两数看两数gcd是否为d,要不我直接从d的倍数开始枚举这两个数吧:

                                ans=\sum_{d=1}^{n}d\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}ijd^2[gcd(i,j)=1]=\sum_{d=1}^{n}d^3\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}ij[gcd(i,j)=1]

由于莫比乌斯函数性质,我们代换:

                                          ans=\sum_{d=1}^{n}d^3\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}ij\sum_{x|gcd(i,j)=1}\mu (x)

从枚举gcd(i,j)的因数换成枚举x,然后i,j分别表示x的倍数吧:

                                          ans=\sum_{d=1}^{n}d^3\sum_{x=1}^{\frac{n}{d}}\mu (x)\sum_{i=1}^{\frac{n}{dx}}\sum_{j=1}^{\frac{n}{dx}}ijx^2

设sum(x)为1,2,3...到x的和:

                                        ans=\sum_{d=1}^{n}d^3\sum_{x=1}^{\frac{n}{d}}\mu (x)x^2sum(\frac{n}{dx})^2

要不我们先直接从1开始枚举dx的值,然后再枚举dx的因数吧,设T=dx:

                                       ans=\sum_{T=1}^{n}sum(\frac{n}{T})^2\sum_{d|T}d^3\mu (\frac{T}{d})(\frac{T}{d})^2

前面那块好像可以用整除分块了,现在我们重点处理后面那一部分的前缀和,化简:

                                      f(T)=T^2\sum_{d|T}d\mu (\frac{T}{d})=T^2\sum_{d|T}\frac{T}{d}\mu (d)

有一个公式:

                                                    \frac{\varphi (T)}{T}=\sum_{d|T}\frac{\mu (d)}{d}

代换:

                                                     f(T)=T^2\varphi (T)

这题需要的前缀和有1e10,因此我们只打表1e7的前缀和,其他的用杜教筛搞定,杜教筛:

                                        g(1)S(n)=\sum_{i=1}^{n}h(i)-\sum_{d=2}^{n}g(d)S(\left \lfloor \frac{n}{d} \right \rfloor)

设g(x)=x^2,则h=f 卷积 g:(用了欧拉函数性质:φ 卷积 I=id )

                                        h(T)=\sum_{d|T}d^2(\frac{T}{d})^2\varphi (\frac{T}{d})=T^2\sum_{d|T}\varphi (\frac{T}{d})=T^3

设S2(n)=1^3+2^3+3^3+...+n^3,我们容易知道S2(n)=(1+2+3+..+n)^2,套一下杜教筛公式:

                                            S(n)=S2(n)-\sum_{d=2}^{n}d^2S(\left \lfloor \frac{n}{d} \right \rfloor)

1^2+2^2+..+n^2=n*(n+1)*(2n+1)/6,那么我们就可以用杜教筛快速求S(T)了,配合整除分块,就搞定这题啦。

                                                 ans=\sum_{T=1}^{n}sum(\frac{n}{T})^2S(T)

#include<bits/stdc++.h>
#include<tr1/unordered_map>
#define ll long long
using namespace std;
const int maxn=1e7+5,N=1e7;
tr1::unordered_map<ll,int>s;
int vis[maxn],pri[maxn],phi[maxn],cnt,inv6,inv2,mod;
void init(int n)
{
	phi[1]=1;
	for(int i=2;i<=n;i++)
	{
		if(!vis[i])
		phi[i]=i-1,pri[++cnt]=i;
		for(int j=1;j<=cnt&&pri[j]*i<=n;j++)
		{
			vis[pri[j]*i]=1;
			if(i%pri[j]==0)
			{
				phi[i*pri[j]]=1ll*phi[i]*pri[j]%mod;
				break;
			}
			phi[i*pri[j]]=1ll*phi[i]*(pri[j]-1)%mod;
		}
	}
	for(int i=1;i<=n;i++)
	phi[i]=(phi[i-1]+1ll*i*i%mod*phi[i])%mod;
}
ll ksm(ll x,int y)
{
	ll res=1;
	while(y)
	{
		if(y&1)res=res*x%mod;
		x=x*x%mod;
		y/=2;
	}
	return res;
}
ll cal(ll n)
{
	n%=mod;
	return n*(n+1)%mod*(2*n+1)%mod*inv6%mod;
}
ll cal2(ll n)
{
	n%=mod;
	return n*(n+1)%mod*inv2%mod;
}
ll dfs(ll n)
{
	if(n<=N)return phi[n];
	if(s[n])return s[n];
	ll ans=cal2(n)*cal2(n)%mod,res=0;
	for(ll l=2,r;l<=n;l=r+1)
	{
		r=n/(n/l);
		res+=(cal(r)-cal(l-1)+mod)*dfs(n/l)%mod;
	}
	s[n]=(ans-res%mod+mod)%mod;
	return s[n];
}
int main()
{
	ll n,ans=0;
	scanf("%d%lld",&mod,&n);
	inv6=ksm(6,mod-2);
	inv2=ksm(2,mod-2);
	init(N);
	for(ll l=1,r;l<=n;l=r+1)
	{
		r=n/(n/l);
		ans+=cal2(n/l)*cal2(n/l)%mod*(dfs(r)-dfs(l-1)+mod)%mod;
	}
	printf("%lld\n",ans%mod);
}

                                     

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙橘子猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值