洛谷 P3768 简单的数学题(莫比乌斯反演+杜教筛)

传送门


题目大意

∑ i = 1 n ∑ j = 1 n i ∗ j ∗ g c d ( i , j ) \sum_{i=1}^n\sum_{j=1}^ni*j*gcd(i,j) i=1nj=1nijgcd(i,j)

莫比乌斯反演

在莫比乌斯反演那里学到了这个式子: n = ∑ d ∣ n φ ( d ) n=\sum_{d|n}\varphi(d) n=dnφ(d)

那么将其代入上式可以得到: ∑ i = 1 n ∑ j = 1 n i ∗ j ∑ d ∣ g c d ( i , j ) φ ( d ) \sum_{i=1}^n\sum_{j=1}^ni*j\sum_{d|gcd(i,j)}\varphi(d) i=1nj=1nijdgcd(i,j)φ(d)

那么我们可以枚举 d ∈ [ 1 , n ] d \in [1,n] d[1,n],然后设 i = x ∗ d , j = y ∗ d i=x*d,j=y*d i=xd,j=yd,枚举 x , y x,y x,y并替换 i i i,我们可以得到:

∑ d = 1 n φ ( d ) ∗ d 2 ∑ x = 1 ⌊ n d ⌋ x ∑ y = 1 ⌊ n d ⌋ y \sum_{d=1}^n \varphi(d) *d^2\sum_{x=1}^{\lfloor \frac{n}{d}\rfloor} x \sum_{y=1}^{\lfloor \frac{n}{d}\rfloor} y d=1nφ(d)d2x=1dnxy=1dny

g ( x ) = x ( x + 1 ) 2 g(x)=\frac{x(x+1)}{2} g(x)=2x(x+1),那么上式等价于:

∑ d = 1 n φ ( d ) ∗ d 2 [ g ( ⌊ n d ⌋ ) ] 2 \sum_{d=1}^n \varphi(d) *d^2 [g(\lfloor \frac{n}{d}\rfloor)]^2 d=1nφ(d)d2[g(dn)]2

如果我们能预处理出 ∑ d = 1 n φ ( d ) ∗ d 2 \sum_{d=1}^n \varphi(d) *d^2 d=1nφ(d)d2,但是 n ≤ 1 e 10 n\leq 1e^{10} n1e10,显然无法线性筛,此时就需要杜教筛了

杜教筛

对于 ∑ d = 1 n φ ( d ) ∗ d 2 \sum_{d=1}^n \varphi(d) *d^2 d=1nφ(d)d2,是比较简单的杜教筛,令 f = φ ∗ i d 2 , g = i d 2 f=\varphi*id_2,g=id_2 f=φid2,g=id2,由狄利克雷卷积得 h = f ∗ g = ∑ d ∣ n ( φ ( d ) ∗ d 2 ) ∗ ( n d ) 2 h=f*g=\sum_{d|n}(\varphi(d)*d^2)*(\frac{n}{d})^2 h=fg=dn(φ(d)d2)(dn)2

展开得到 ∑ d ∣ n φ ( d ) ∗ n 2 \sum_{d|n}\varphi(d)*n^2 dnφ(d)n2,根据莫比乌斯反演的结论 n = ∑ d ∣ n φ ( d ) n=\sum_{d|n}\varphi(d) n=dnφ(d),代入得 h = n 3 h=n^3 h=n3

f ( n ) f(n) f(n)的前缀和为 S ( n ) S(n) S(n),那么根据杜教筛的常用套路:

S ( n ) = ∑ i = 1 n i 3 − ∑ i = 2 n φ ( i ) ∗ i 2 S(n)=\sum_{i=1}^ni^3-\sum_{i=2}^n\varphi(i)*i^2 S(n)=i=1ni3i=2nφ(i)i2

预处理 n 2 3 n^{\frac{2}{3}} n32以内的 f f f的前缀和,然后套用这个公式,至于 ∑ i = 1 n i 3 \sum_{i=1}^ni^3 i=1ni3,显然不难得到: ( n ( n + 1 ) 2 ) 2 (\frac{n(n+1)}{2})^2 (2n(n+1))2

代码

一开始线性递推求 ∑ i = 1 n i 3 \sum_{i=1}^ni^3 i=1ni3,但是不知道为什么样例都不对,调了好久也不知道为什么


//
// Created by Happig on 2020/9/27
//
#include <bits/stdc++.h>
#include <unordered_map>
#include <unordered_set>

using namespace std;
#define fi first
#define se second
#define pb push_back
#define ins insert
#define Vector Point
#define ENDL "\n"
#define lowbit(x) (x&(-x))
#define mkp(x, y) make_pair(x,y)
#define mem(a, x) memset(a,x,sizeof a);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double dinf = 1e300;
const ll INF = 1e18;
ll Mod = 1e9 + 7;
const int maxn = 5e6 + 10;

vector<int> prime;
bitset<maxn> vis;
int N;
ll sum[maxn], phi[maxn];
unordered_map<ll, ll> mp;
ll inv;

ll qkp(ll x, ll n, ll p) {
    x %= p;
    ll ans = 1;
    while (n) {
        if (n & 1) ans = ans * x % p;
        x = x * x % p;
        n >>= 1;
    }
    return ans;
}

void init(ll n) {
    sum[1] = phi[1] = 1;
    vis.reset(), prime.clear();
    //N = pow(n, 2 / 3);
    inv = qkp(6, Mod - 2, Mod);
    for (int i = 2; i < maxn; i++) {
        if (!vis[i]) {
            prime.push_back(i);
            phi[i] = i - 1;
        }
        for (int j = 0; j < prime.size() && 1LL * i * prime[j] < maxn; j++) {
            vis[i * prime[j]] = 1;
            if (i % prime[j]) {
                phi[i * prime[j]] = phi[i] * phi[prime[j]] % Mod;
            } else {
                phi[i * prime[j]] = phi[i] * prime[j] % Mod;
                break;
            }
        }
        ll x = 1LL * i * i % Mod;
        sum[i] = (sum[i - 1] + phi[i] * x % Mod) % Mod;
        //pre[i] = (pre[i - 1] + x * i % Mod) % Mod;
    }
}

ll g(ll x) {
    x %= Mod;  //注意
    return x * (x + 1) / 2 % Mod;
}

ll f(ll x) {
    x %= Mod;  //注意
    return x * (x + 1) % Mod * (x + x + 1) % Mod * inv % Mod;
}

ll getSum(ll n) {
    if (n < maxn) return sum[n];
    if (mp[n]) return mp[n];
    ll x = g(n);
    ll ans = x * x % Mod;
    for (ll l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        if (r > n) r = n;
        ans = (ans - (f(r) - f(l - 1) + Mod) % Mod * getSum(n / l) % Mod + Mod) % Mod;
    }
    return mp[n] = ans;
}

int main() {
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    ll n;
    cin >> Mod >> n;
    init(n);
    ll ans = 0;
    for (ll l = 1, r; l <= n; l = r + 1) {
        r = n / (n / l);
        if (r > n) r = n;
        ll res = g(n / l) * g(n / l) % Mod;
        ans += (getSum(r) - getSum(l - 1) + Mod) % Mod * res % Mod;
        ans %= Mod;
    }
    cout << ans << ENDL;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值