笛卡尔树模板

hdu 6305 RMQ Similar Sequence

题意:定义两个序列相似:对于任意的 l<=r,A序列区间[ l , r ]的最值下标 = B序列区间[ l , r ]的最值下标,现给出A序列,已知B序列元素为[0,1]之间的实数,求与A相似的B序列的所有元素期望和。

思路借鉴:丿残念灬

模板借鉴:qkoqhh

笛卡尔树简介:笛卡尔树

思路:知道了笛卡尔树特性后,这题可以转化求与A的笛卡尔树的同构树方案,对于大小为sz[u]的子树rt[u],因为最大的数必须为根,很显然其同构方案的概率为1/sz[u],因此B元素完全随机与A的笛卡尔树同构的概率为1/\prod_{i=1}^{n}sz[i],每个元素期望的值为1/2,因此答案为:概率*n/2。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e6+10,mod=1e9+7;
int a[maxn],l[maxn],r[maxn],sz[maxn],inv[maxn];
ll ans;
stack<int>s;
void dfs(int u)
{
    sz[u]=1;
    if(l[u])
        dfs(l[u]),sz[u]+=sz[l[u]];
    if(r[u])
        dfs(r[u]),sz[u]+=sz[r[u]];
    ans=ans*inv[sz[u]]%mod;
}
int main()
{
    int T;
    inv[0]=inv[1]=1;
    for(int i=2;i<=1000000;i++)
        inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
    scanf("%d",&T);
    while(T--)
    {
        int n,rt;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            l[i]=r[i]=0;
            while(!s.empty()&&a[i]>a[s.top()])
                l[i]=s.top(),s.pop();
            if(!s.empty())
                r[s.top()]=i;
            s.push(i);
        }
        while(!s.empty())
            rt=s.top(),s.pop();
        ans=1ll*n*inv[2]%mod;
        dfs(rt);
        printf("%lld\n",ans);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙橘子猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值