题意:定义两个序列相似:对于任意的 l<=r,A序列区间[ l , r ]的最值下标 = B序列区间[ l , r ]的最值下标,现给出A序列,已知B序列元素为[0,1]之间的实数,求与A相似的B序列的所有元素期望和。
思路借鉴:丿残念灬
模板借鉴:qkoqhh
笛卡尔树简介:笛卡尔树
思路:知道了笛卡尔树特性后,这题可以转化求与A的笛卡尔树的同构树方案,对于大小为sz[u]的子树rt[u],因为最大的数必须为根,很显然其同构方案的概率为1/sz[u],因此B元素完全随机与A的笛卡尔树同构的概率为,每个元素期望的值为1/2,因此答案为:概率*n/2。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e6+10,mod=1e9+7;
int a[maxn],l[maxn],r[maxn],sz[maxn],inv[maxn];
ll ans;
stack<int>s;
void dfs(int u)
{
sz[u]=1;
if(l[u])
dfs(l[u]),sz[u]+=sz[l[u]];
if(r[u])
dfs(r[u]),sz[u]+=sz[r[u]];
ans=ans*inv[sz[u]]%mod;
}
int main()
{
int T;
inv[0]=inv[1]=1;
for(int i=2;i<=1000000;i++)
inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
scanf("%d",&T);
while(T--)
{
int n,rt;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
l[i]=r[i]=0;
while(!s.empty()&&a[i]>a[s.top()])
l[i]=s.top(),s.pop();
if(!s.empty())
r[s.top()]=i;
s.push(i);
}
while(!s.empty())
rt=s.top(),s.pop();
ans=1ll*n*inv[2]%mod;
dfs(rt);
printf("%lld\n",ans);
}
}