A All-one Matrices
题意:问有多少个全1的子矩形,且该矩形不会被另外一个全1子矩形覆盖
解法:我们预处理每个1的高度以及每一行的前缀和,枚举每一行 i,单调栈求出每个点 j 以h[i][j](1的高度)为高度的矩形左边界L[j]和右边界R[j],然后枚举每个点,如果sum[i + 1][R[j]] - sum[i + 1][L[j] - 1] != R[j] - L[j] + 1,说明这个矩形下面一排不全是1,不会被覆盖,答案++,然后我们要去重,可能有多个点 j,他们形成的矩形是一模一样的,我们再用一个单调栈(维护单调递增的高度)去一下重,如果栈顶元素高度等于当前点高度,说明是重复的,不用计算。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 3005;
int h[maxn][maxn], sum[maxn][maxn], q[maxn], R[maxn], L[maxn];
char s[maxn][maxn];
int main() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%s", s[i] + 1);
for (int j = 1; j <= m; j++) {
if (s[i][j] == '1')
h[i][j] = h[i - 1][j] + 1;
sum[i][j] = sum[i][j - 1] + s[i][j] - '0';
}
}
int ans = 0;
for (int i = n; i; i--) {
stack<int> sta;
sta.push(m + 1);
for (int j = m; j; j--) {
while (!sta.empty() && h[i][j] <= h[i][sta.top()])
sta.pop();
if (sta.empty())
R[j] = -1;
else
R[j] = sta.top() - 1;
sta.push(j);
}
while (!sta.empty())
sta.pop();
sta.push(0);
for (int j = 1; j <= m; j++) {
while (!sta.empty() && h[i][j] <= h[i][sta.top()])
sta.pop();
if (sta.empty())
L[j] = -1;
else
L[j] = sta.top() + 1;
sta.push(j);
}
while (!sta.empty())
sta.pop();
for (int j = 1; j <= m; j++) {
if (h[i][j] == 0) {
while (!sta.empty())
sta.pop();
continue;
}
while (!sta.empty() && h[i][j] < h[i][sta.top()])
sta.pop();
if (sta.empty() || h[i][j] != h[i][sta.top()]) {
int l = L[j];
int r = R[j];
if (sum[i +1][r] - sum[i + 1][l - 1] != r - l + 1)
ans++;
sta.push(j);
}
}
}
printf("%d\n", ans);
}