2019牛客暑期多校训练营(第八场)

A All-one Matrices

题意:问有多少个全1的子矩形,且该矩形不会被另外一个全1子矩形覆盖
解法:我们预处理每个1的高度以及每一行的前缀和,枚举每一行 i,单调栈求出每个点 j 以h[i][j](1的高度)为高度的矩形左边界L[j]和右边界R[j],然后枚举每个点,如果sum[i + 1][R[j]] - sum[i + 1][L[j] - 1] != R[j] - L[j] + 1,说明这个矩形下面一排不全是1,不会被覆盖,答案++,然后我们要去重,可能有多个点 j,他们形成的矩形是一模一样的,我们再用一个单调栈(维护单调递增的高度)去一下重,如果栈顶元素高度等于当前点高度,说明是重复的,不用计算。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 3005;
int h[maxn][maxn], sum[maxn][maxn], q[maxn], R[maxn], L[maxn];
char s[maxn][maxn];
int main() {
    int n, m;
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) {
        scanf("%s", s[i] + 1);
        for (int j = 1; j <= m; j++) {
            if (s[i][j] == '1')
                h[i][j] = h[i - 1][j] + 1;
            sum[i][j] = sum[i][j - 1] + s[i][j] - '0';
        }
    }
    int ans = 0;
    for (int i = n; i; i--) {
        stack<int> sta;
        sta.push(m + 1);
        for (int j = m; j; j--) {
            while (!sta.empty() && h[i][j] <= h[i][sta.top()])
                sta.pop();
            if (sta.empty())
                R[j] = -1;
            else
                R[j] = sta.top() - 1;
            sta.push(j);
        }
        while (!sta.empty())
            sta.pop();
        sta.push(0);
        for (int j = 1; j <= m; j++) {
            while (!sta.empty() && h[i][j] <= h[i][sta.top()])
                sta.pop();
            if (sta.empty())
                L[j] = -1;
            else
                L[j] = sta.top() + 1;
            sta.push(j);
        }
        while (!sta.empty())
            sta.pop();
        for (int j = 1; j <= m; j++) {
            if (h[i][j] == 0) {
                while (!sta.empty())
                    sta.pop();
                continue;
            }
            while (!sta.empty() && h[i][j] < h[i][sta.top()])
                sta.pop();
            if (sta.empty() || h[i][j] != h[i][sta.top()]) {
                int l = L[j];
                int r = R[j];
                if (sum[i +1][r] - sum[i + 1][l - 1] != r - l + 1)
                    ans++;
                sta.push(j);
            }
        }
    }
    printf("%d\n", ans);
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙橘子猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值