题意:
给你一张图,每条边都有能通过的数组范围,问你有多少种数字能够从1到n
题解:
这个主要有线段树和LCT两种各做法,然而我在比赛的时候一种都没做出来。。
这个是LCT的时间复杂度以及空间复杂度:
这是线段树:
可以看出LCT还是很优秀的(虽然可能是有各种优化的原因)
这是线段树的做法:
线段树就像前两天查中位数那道题一样的建树方法,也就是用r+1代替r,这样的话b[r+1]-b[l]代替b[r]-b[l]+1,省下可能出现的错误。虽然这里没有push_down。之后我们用vector记录每个区间所拥有的边,这样我们查询这个区间所拥有的边的时候就可以利用并查集来看1与n是否联通。
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5;
struct node
{
int x,y,l,r;
}e[N];
int b[N*2];
vector<int>vec[N*5];
void update(int l,int r,int root,int ql,int qr,int x)
{
if(l>=ql&&r<=qr)
{
vec[root].push_back(x);
return ;
}
int mid=l+r>>1;
if(mid>=ql)
update(l,mid,root<<1,ql,qr,x);
if(mid<qr)
update(mid+1,r,root<<1|1,ql,qr,x);
}
int fa[N];
int finds(int x){return x==fa[x]?fa[x]:finds(fa[x]);}
int ans,n,m,siz[N];
void query(int l,int r,int root)
{
vector<int>v;
for(int i=0;i<vec[root].size();i++)
{
int x=vec[root][i];
int fax=finds(e[x].x),fay=finds(e[x].y);
if(fax!=fay)
{
if(siz[fax]<siz[fay])
swap(fax,fay);
fa[fay]=fax;
v.push_back(fay);
siz[fax]+=siz[fay];
}
}
if(finds(1)==finds(n))
ans+=b[r+1]-b[l];
else if(l<r)
{
int mid=l+r>>1;
query(l,mid,root<<1);
query(mid+1,r,root<<1|1);
}
for(int i=0;i<v.size();i++)
fa[v[i]]=v[i];
v.clear();
}
int main()
{
for(int i=1;i<N;i++)
fa[i]=i,siz[i]=1;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].l,&e[i].r),b[i*2-1]=e[i].l,b[i*2]=e[i].r+1;
sort(b+1,b+1+m*2);
int all=unique(b+1,b+1+m*2)-b-1;
for(int i=1;i<=m;i++)
update(1,all,1,lower_bound(b+1,b+1+all,e[i].l)-b,lower_bound(b+1,b+1+all,e[i].r+1)-b-1,i);
query(1,all,1);
printf("%d\n",ans);
return 0;
}
This is LCT
这也是从别人那里看来的做法:LCT维护最小生成树
首先将所有边从大到小排序,为什么?因为新进来的边的右边界一定小于等于原来的右边界,这样的话我们只需要考虑左边界即可,那么如果当前两个点不在一棵树内,就连接,至于为什么是link(i,m+x),因为我们后面修改的时候需要知道边的信息,从而将这条边删掉,然后再加入新的边。
至于我们要删掉那条边,当然是左边界最大的边,因为右边界定了,是当前的最小,那么有多种1-n的可能时,我们当然是选择左边界最小的可能性,这样我们LCT维护1-m链上的左边界最大值即可。
当1-n联通时,查询链上最大左边界是否小于当前边的右边界,再加入答案。
最后是枚举所有的区间,取其不相交部分。
#include<bits/stdc++.h>
#define G if(++ip==ie)if(fread(ip=buf,1,SZ,stdin))
#define pa pair<int,int>
#define ri register int
#define ii inline int
#define ib inline bool
#define iv inline void
using namespace std;
const int N=3e5+5;
int f[N],ch[N][2],rev[N],siz[N];
const int SZ=1<<19;
char buf[SZ],*ie=buf+SZ,*ip=ie-1;
ii in(){
G;while(*ip<'-')G;
ri x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
struct node
{
int x,y,l,r;//struct do not suppose ri
bool operator< (const node& a)const
{
return r>a.r;
}
}e[N];
int mx[N];
ib is_rt(ri x)
{
return ch[f[x]][0]==x||ch[f[x]][1]==x;
}
int ans[N],a[N];
iv push_up(ri x)
{
mx[x]=x;
ch[x][0]&&e[mx[ch[x][0]]].l>e[mx[x]].l&&(mx[x]=mx[ch[x][0]]);
ch[x][1]&&e[mx[ch[x][1]]].l>e[mx[x]].l&&(mx[x]=mx[ch[x][1]]);
}
iv reverse(ri x)
{
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
}
iv push_down(ri x)
{
if(!rev[x])
return ;
if(ch[x][0])
reverse(ch[x][0]);
if(ch[x][1])
reverse(ch[x][1]);
rev[x]=0;
}
iv rotate(ri x){//一次旋转
int y=f[x],z=f[y],k=ch[y][1]==x,w=ch[x][!k];
if(is_rt(y))ch[z][ch[z][1]==y]=x;ch[x][!k]=y;ch[y][k]=w;//额外注意if(nroot(y))语句,此处不判断会引起致命错误(与普通Splay的区别2)
if(w)f[w]=y;f[y]=x;f[x]=z;
push_up(y);
}
int st[N];
iv splay(ri x){//只传了一个参数,因为所有操作的目标都是该Splay的根(与普通Splay的区别3)
ri y=x,z=0;
st[++z]=y;//st为栈,暂存当前点到根的整条路径,pushdown时一定要从上往下放标记(与普通Splay的区别4)
while(is_rt(y))st[++z]=y=f[y];
while(z)push_down(st[z--]);
while(is_rt(x)){
y=f[x];z=f[y];
if(is_rt(y))
rotate((ch[y][0]==x)^(ch[z][0]==y)?x:y);
rotate(x);
}
push_up(x);
}
/*当然了,其实利用函数堆栈也很方便,代替上面的手工栈,就像这样
I pushall(R x){
if(is_rt(x))pushall(f[x]);
pushdown(x);
}*/
iv access(ri x){//访问
for(ri y=0;x;x=f[y=x])
splay(x),ch[x][1]=y,push_up(x);
}
iv makeroot(ri x){//换根
access(x);splay(x);
reverse(x);
}
ii findroot(ri x){//找根(在真实的树中的)
access(x);splay(x);
while(ch[x][0])push_down(x),x=ch[x][0];
splay(x);
return x;
}
iv split(ri x,ri y){//提取路径
makeroot(x);
access(y);splay(y);
}
iv link(ri x,ri y){//连边
makeroot(x);
if(findroot(y)!=x)f[x]=y;
//splay(x);
push_up(x);
}
iv cut(ri x,ri y){//断边
makeroot(x);
if(findroot(y)==x&&f[y]==x&&!ch[y][0]){
f[y]=ch[x][1]=0;
push_up(x);
}
}
ii finds(ri x)
{
access(x),splay(x);
while(ch[x][0])
x=ch[x][0];
return x;
}
ii query(ri x,ri y)
{
makeroot(y);
access(x),splay(x);
return mx[x];
}
vector<pa>vec;
int main()
{
ri n,m;
n=in(),m=in();
for(ri i=1;i<=m;i++)
e[i].x=in(),e[i].y=in(),e[i].l=in(),e[i].r=in();
sort(e+1,e+1+m);
for(ri i=1;i<=m;i++)
{
ri x=e[i].x,y=e[i].y;
if(finds(m+x)!=finds(m+y))
link(i,m+x),link(i,m+y);
else
{
ri mm=query(m+x,m+y);
//printf("mm: %d\n",mm);
if(e[mm].l>e[i].l)
cut(mm,m+e[mm].y),cut(mm,m+e[mm].x),link(i,m+x),link(i,m+y);
}
if(finds(m+1)==finds(m+n))
{
ri mm=query(m+1,m+n);
if(e[mm].l<=e[i].r)
vec.push_back({e[mm].l,e[i].r});
}
}
sort(vec.begin(),vec.end());
ri ans=0,j;
for(ri i=0;i<vec.size();i=j)
{
int rig=vec[i].second;
for(j=i+1;j<vec.size()&&vec[j].first<=rig;j++)
rig=max(rig,vec[j].second);
ans+=rig-vec[i].first+1;
}
printf("%d\n",ans);
return 0;
}