scikit-multilearn中的一个疑问

本文探讨了使用SVM作为基分类器结合BR算法在scikit-multilearn多标记学习库中遇到的问题。具体分析了当数据集中某一标记下仅存在一类样本时,SVM无法进行有效训练的情况,这是一个值得关注的多标记学习库潜在BUG。
摘要由CSDN通过智能技术生成

用SVM进行多标记学习-scikit-multilearn中的BR算法模块

在研究多标记学习的过程中,接触到了python中的scikit-multilearn多标记学习库,网址如下:http://scikit.ml。其中有一个二元关联分类的例子
在这里插入图片描述
这里使用SVM作为基分类器使用BR算法。然而,在实验中出现了这样的错误:在这里插入图片描述
定位到错误发生的位置base.py第525行在这里插入图片描述
发现错误原因是训练模型的时候,数据集的某一种标记下的只有一类。也就是下面这种情况在这里插入图片描述
第5列和第6列为样本的标记。其中第5列所有样本的类别都为1,SVM无法进行训练。

我接触的数据集中有一些是存在这种情况的,如:business,computer,corel5k等等。
也许这是该多标记学习库中的一个小BUG。个人愚见,如有问题,欢迎指出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值