什么是NP问题,什么有是NP完全问题(NP-complete problem)
(2012-07-03 16:04:48) 在算法复杂度分析的过程中,人们常常用特定的函数来描述目标算法,随着变量n的增长,时间或者空间消耗的增长曲线,近而进一步分析算法的可行性(有效性)。
引入了Big-O,Big-Ω,来描述目标算法的上限、下限复杂度函数。
用Big-Θ描述和目标函数同序的复杂度函数,即由Big-Θ既是上限也是下限。
常常用到如下时间复杂度函数标度
1,
通常将具有n^x,x为正整数形式的时间复杂度函数称为多项式复杂度。通常认为具有多项式时间复杂度的算法是容易求解的。超过多项式时间复杂度,算法增长迅速,不易求解。
通常问题分为 可解决(Solvable) 和 不可解决(Unsolvable)。
可决绝问题又可以分为 易解决(Tractable)、不易解决(Intractable)和不确定是否容易解决(NP)
可解决(Solvable)是指存在算法能够解决的问题
不可解决(Unsolvable)是指不存在解决该问题的算法,如The Halting Problem。
易解决(Tractable),即P问题,是指具有最坏时间复杂度为多项式时间的算法能够解决的问题
不易解决(Intractable)是指不存在最坏时间复杂度为多项式时间的算法能够解决的问题
不确定是否容易解决(NP),还未被证明是否存在多项式算法能够解决这些问题,而其中NP完全问题又是最有可能不是P问题的问题类型。