神经网络中的权重初始化常用方法

1.权重初始化的重要性
  • 神经网络的训练过程中的参数学习时基于梯度下降算法进行优化的。梯度下降法需要在开始训练时给每个参数赋予一个初始值。这个初始值的选取十分重要。在神经网络的训练中如果将权重全部初始化为0,则第一遍前向传播过程中,所有隐藏层神经元的激活函数值都相同,导致深层神经元可有可无,这一现象称为对称权重现象。
  • 为了打破这个平衡,比较好的方法是对每层的权重都进行随机初始化,这样使得不同层的神经元之间有很好的区分性。但是,随机初始化参数的一个问题是如何选择随机初始化的区间。如果权重初始化太小,会导致神经元的输入过小,随着层数的不断增加,会出现信号消失的问题;也会导致sigmoid激活函数丢失非线性的能力,因为在0附件sigmoid函数近似是线性的。如果参数初始化太大,会导致输入状态太大。对sigmoid激活函数来说,激活函数的值会变得饱和,从而出现梯度消失的问题。
2.常用的参数初始化方法
  • 高斯分布初始化:参数从一个固定均值(比如0)和固定方差(比如0.01)的高斯分布进行随机初始化。
  • 均匀分布初始化:在一个给定的区间[-r,r]内采用均匀分布来初始化参数。超参数r的设置可以按照神经元的连接数量进行自适应的调整。
  • 初始化一个深层神经网络时,一个比较好的初始化策略是保持每个神经元输入和输出的方差一致
3.Xavier初始化
  • 当网络使用logistic激活函数时,xavier初始化可以根据每层的神经元数量来自动计算初始化参数的方差。假设第l层神经元的激活函数是logistic函数,对第l-1层到第l层的权重区间r可以设置为
    r = 6 n l − 1 + n l r=\sqrt{\frac{6}{n^{l-1}+n^{l}}} r=nl1+nl6
    上式中 n l n^{l} nl是第l层神经元个数, n l − 1 n^{l-1} nl1是第l-1层神经元个数。
  • 对于tanh函数,r可以设置为
    r = 4 6 n l − 1 + n l r=4 \sqrt{\frac{6}{n^{l-1}+n^{l}}} r=4nl1+nl6
    假设第l层的一个隐藏神经元 z l z^{l} zl,其接收前一层的 n l − 1 n^{l-1} nl1个神经元的输出 a i ( l − 1 ) a_{i}^{(l-1)} ai(l1) i ∈ [ 1 , n ( l − 1 ) ] i \in\left[1, n^{(l-1)}\right] i[1,n(l1)]
    z l = ∑ i = 1 n ( l − 1 ) w i l a i ( l − 1 ) z^{l}=\sum_{i=1}^{n^{(l-1)}} w_{i}^{l} a_{i}^{(l-1)} zl=i=1n(l1)wilai(l1)
  • 为了避免初始化参数使得激活函数变得饱和,需要尽量使得 z l z^{l} zl处于激活函数的线性区间,也就是其绝对值较小的值,这时此神经元的激活值为 f ( z l ) ≈ z l f\left(z^{l}\right) \approx z^{l} f(zl)zl。假设 w i l w_{i}^{l} wil a i ( l − 1 ) a_{i}^{(l-1)} ai(l1)的均值都是0,并且相互独立,则 a l a^{l} al的均值为
    E [ a l ] = E [ ∑ i = 1 n ( l − 1 ) w i l a i ( l − 1 ) ] = ∑ i = 1 n ( l − 1 ) E [ w i ] E [ a i ( l − 1 ) ] = 0 \mathbb{E}\left[a^{l}\right]=\mathbb{E}\left[\sum_{i=1}^{n^{(l-1)}} w_{i}^{l} a_{i}^{(l-1)}\right]=\sum_{i=1}^{n^{(l-1)}} \mathbb{E}\left[\mathbf{w}_{i}\right] \mathbb{E}\left[a_{i}^{(l-1)}\right]=0 E[al]=Ei=1n(l1)wilai(l1)=i=1n(l1)E[wi]E[ai(l1)]=0
    a l a^{l} al的方差为
    var ⁡ [ a l ] = var ⁡ [ ∑ i = 1 n ( l − 1 ) w i l a i ( l − 1 ) ] = ∑ i = 1 n ( l − 1 ) var ⁡ [ w i l ] var ⁡ [ a i ( l − 1 ) ] = n ( l − 1 ) var ⁡ [ w i l ] var ⁡ [ a i ( l − 1 ) ] \begin{aligned} \operatorname{var}\left[a^{l}\right] &=\operatorname{var}\left[\sum_{i=1}^{n^{(l-1)}} w_{i}^{l} a_{i}^{(l-1)}\right] \\ &=\sum_{i=1}^{n^{(l-1)}} \operatorname{var}\left[w_{i}^{l}\right] \operatorname{var}\left[a_{i}^{(l-1)}\right] \\ &=n^{(l-1)} \operatorname{var}\left[w_{i}^{l}\right] \operatorname{var}\left[a_{i}^{(l-1)}\right] \end{aligned} var[al]=vari=1n(l1)wilai(l1)=i=1n(l1)var[wil]var[ai(l1)]=n(l1)var[wil]var[ai(l1)]
  • 也就是说,输入信号的方差在经过此神经元后被放大或缩小了 n ( l − 1 ) var ⁡ [ w i l ] n^{(l-1)} \operatorname{var}\left[w_{i}^{l}\right] n(l1)var[wil]倍。为了使得在经过多层神经网络后,信号不被过分放大或缩小,尽可能保存每个神经元的输入和输出的方差一致,这样 n ( l − 1 ) var ⁡ [ w i l ] n^{(l-1)} \operatorname{var}\left[w_{i}^{l}\right] n(l1)var[wil]设为1比较合理,即
    var ⁡ [ w i l ] = 1 n ( l − 1 ) \operatorname{var}\left[w_{i}^{l}\right]=\frac{1}{n^{(l-1)}} var[wil]=n(l1)1
  • 作为折中,同时考虑信号在前向和反向传播中都不被放大或减小,可以设置
    var ⁡ [ w i l ] = 2 n ( l − 1 ) + n ( l ) \operatorname{var}\left[w_{i}^{l}\right]=\frac{2}{n^{(l-1)}+n^{(l)}} var[wil]=n(l1)+n(l)2
  • 在计算出参数的理想方差后,可以通过高斯分布或均匀分布来随机初始化参数。
  • 高斯分布初始化:如果采用高斯分布来随机初始化参数时,连接权重 w i l w_{i}^{l} wil可以按 N ( 0 , 2 n ( l − 1 ) + n ( l ) ) \mathcal{N}\left(0, \sqrt{\frac{2}{n^{(l-1)}+n^{(l)}}}\right) N(0,n(l1)+n(l)2 )的高斯分布进行初始化。
  • 均匀分布初始化:假设算计变量x在区间[a,b]内服从均匀分布,则其方差为
    var ⁡ [ x ] = ( b − a ) 2 12 \operatorname{var}[x]=\frac{(b-a)^{2}}{12} var[x]=12(ba)2
  • 因此,如果采用区间为[-r,r]的均匀分布来初始化 w i l w_{i}^{l} wil,并满足 var ⁡ [ w i l ] = 2 n ( l − 1 ) + n ( l ) \operatorname{var}\left[w_{i}^{l}\right]=\frac{2}{n^{(l-1)}+n^{(l)}} var[wil]=n(l1)+n(l)2,则r的取值为
    r = 6 n l − 1 + n 1 r=\sqrt{\frac{6}{n^{l-1}+n^{1}}} r=nl1+n16
4.He初始化
  • 当第l层神经元使用ReLU激活函数时,通常有一般的神经元输出为0,因此其分布的方差也近似为使用logistic作为激活函数时的一半。这样,只考虑前向传播时,参数 w i l w_{i}^{l} wil的理想方差为
    var ⁡ [ w i l ] = 2 n ( l − 1 ) \operatorname{var}\left[w_{i}^{l}\right]=\frac{2}{n^{(l-1)}} var[wil]=n(l1)2
    其中 n l − 1 n^{l-1} nl1是第l-1层的神经元个数。
  • 因此,当使用ReLU激活函数时,如果采用高斯分布来初始化参数 w i l w_{i}^{l} wil,其方差为 2 n ( l − 1 ) \frac{2}{n^{(l-1)}} n(l1)2;如果采用区间为[-r,r]的均匀分布来初始化参数 w i l w_{i}^{l} wil时,则 r = 6 n l − 1 r=\sqrt{\frac{6}{n^{l-1}}} r=nl16
5.参考书籍
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值