麦兜ppig
码龄10年
关注
提问 私信
  • 博客:273,487
    问答:10
    273,497
    总访问量
  • 51
    原创
  • 1,956,079
    排名
  • 64
    粉丝
  • 0
    铁粉

个人简介:由于个人太笨,评论的信息不知道怎么接收,再看时已经过去了大半年了/捂脸。文章内容可随意转载。 此博客的主要用途是用来以后自己梳理知识的,也是自己的个人见解,难免有不合理的地方,期待更加专业的你予以指导。 邮箱1137199634@qq.com 博客中出现的问题可以发邮件与我进行交流。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2015-06-18
博客简介:

qq_29133371的博客

查看详细资料
个人成就
  • 获得152次点赞
  • 内容获得72次评论
  • 获得131次收藏
创作历程
  • 1篇
    2018年
  • 23篇
    2017年
  • 39篇
    2016年
  • 5篇
    2015年
成就勋章
TA的专栏
  • docker
  • redis
    3篇
  • 机器学习
    6篇
  • maven
    6篇
  • MATLAB
    7篇
  • Deeplearning
    41篇
  • Linux
    7篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Anaconda 安装tensorflow后安装warp-ctc

warp-ctc: https://github.com/baidu-research/warp-ctcAnaconda 安装tensorflow参照官网即可。环境:Ubuntu 14.04,tf 1.5, GPU1:找一个位置,clone warp-ctcgit clone https://github.com/baidu-research/warp-ctc.gitcd warp-ctc2:创...
原创
发布博客 2018.05.22 ·
4895 阅读 ·
1 点赞 ·
11 评论 ·
3 收藏

深度学习 优化算法

发布资源 2017.10.12 ·
docx

深度学习 检测模型对比

发布资源 2017.10.12 ·
docx

深度学习 loss

发布资源 2017.10.12 ·
docx

深度学习 loss

原创
发布博客 2017.10.12 ·
1989 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习,机器学习部分基本概念

由于公式上传不上去,没办法。文档地址:http://download.csdn.net/download/qq_29133371/9998046,为什么现在没有0分值了?
原创
发布博客 2017.10.12 ·
589 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习 激活函数

由于公式上传不上去,没办法。文档地址:http://download.csdn.net/download/qq_29133371/9998064,为什么现在没有0分值了?
原创
发布博客 2017.10.12 ·
448 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习 检测模型对比

基于region proposal方法R-CNN是针对区域提取特征的目标检测模型检测流程:通过selective search的方式从图片中提取可能的目标的候选窗口,将窗口warp到同一个尺寸,通过卷积网络从warp之后的候选窗口提取特征,将特征送给分类器进行分类,最后再加上bounding box regression等操作得到更准确的目标位置。总结起来就是先训练SVM分类器,后进行
原创
发布博客 2017.10.12 ·
5262 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

深度学习 优化算法

不支持复制粘贴公式,很无奈。
原创
发布博客 2017.10.12 ·
409 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度学习 激活函数概念

发布资源 2017.09.27 ·
docx

机器学习,深度学习部分基本概念

发布资源 2017.09.27 ·
docx

yolo2

出处:https://zhuanlan.zhihu.com/p/25167153分析的比较细致,直接看原文,图不完整本文是对 YOLO9000: Better, Faster, Stronger (项目主页) 的翻译。加了个人理解和配图。内容参考了 YOLOv2 论文笔记 - Jesse_Mx 。水平有限,错误之处欢迎指正。1. 概述YOLO2主要有两个大方面的
转载
发布博客 2017.08.27 ·
707 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

deformable convolutional networks

转自:点击打开链接上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化——Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转、平移、缩放、剪裁性。为什么要做这个很奇怪的结构呢?原因还是因为CNN不够鲁棒,比如把一张图片颠倒一下,可能就不认识了(这里mark一下,提高CNN的泛化能力,值得继续花很大
转载
发布博客 2017.06.13 ·
1570 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

谈谈深度学习中的 Batch_Size

Batch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开。首先,为什么需要有 Batch_Size 这个参数?Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用全数据集 ( Full Batch Learning )的形式,这样做至少有 2 个好处:其一,由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。其
转载
发布博客 2017.06.06 ·
659 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

关于图像卷积与caffe中卷积实现

图像卷积及Caffe中的卷积实现  原创内容,转载请注明出处。   本文简单介绍了图像卷积相关的知识以及Caffe中的卷积实现方法,写作过程中参考了很多很赞的资料,有兴趣的读者可以从【参考资料】查看。   博文中的错误和不足之处还望各位读者指正。什么是卷积?  专业不是信工方面,也没学过信号与系统这门课。所以我也就不给出很专业的卷积定义和公式表达,引用一个例
转载
发布博客 2017.03.31 ·
1217 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

feature map计算方法与faster-rcnn中roi映射到feature map的位置计算方法

feature map计算方法:在CNN网络中roi从原图映射到feature map中的计算方法INPUT为32*32,filter的大小即kernel size为5*5,stride = 1,pading=0,卷积后得到的feature maps边长的计算公式是:output_h =(originalSize_h+padding*2-kernelSize_h)/stride
原创
发布博客 2017.03.13 ·
8788 阅读 ·
8 点赞 ·
7 评论 ·
24 收藏

Speed/accuracy trade-offs for modern convolutional object detectors

Speed/accuracytrade-offs for modern convolutional object detectors 1:Accurancy VS time从上图可以看出SSD,R-FCN在速度上要远远超过Faster R-CNN,但是在精度上Faster R-CNN领先,R-FCN紧随其后。但是Faster R-CNN可以通过设置region propos
原创
发布博客 2017.02.23 ·
4596 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

自制作数据上的pva faster rcnn 训练

一:数据集制作,参考我的上一篇文章http://blog.csdn.net/qq_29133371/article/details/54408165数据集制作完成后将这三个文件夹复制至一个文件夹(命名为VOC2007)当中,再移动至$pva-faster-rcnn/data/VOCdevkit2007中,替换原来的VOC2007二:训练阶段类别设置:(有几类设置几类,我的这
原创
发布博客 2017.02.14 ·
2063 阅读 ·
2 点赞 ·
4 评论 ·
3 收藏

制作VOC类型数据集,生成txt,生成lmdb

前言:数据样式参照PASCALVOC一:搜集图片,或者视频数据等,利用标注工具,形成图片信息以及注释信息。标注工具,自己编写的,可以拿去使用:二:通过xml文件以及图片信息形成ImageSets/Main/trainval.txt,test.txt,val.txt,trainval.txt文件地址:链接:http://pan.baidu.com/s/1cxNnrg 密码:j
原创
发布博客 2017.02.13 ·
11381 阅读 ·
3 点赞 ·
3 评论 ·
18 收藏

Beyond Skip Connections: Top-Down Modulation for Object Detection阅读笔记

Beyond Skip Connections: Top-Down Modulation for Object Detection   此图是整个文章的框架图。1:Top-Down Modulation (TDM)      TDM模块由两部分组成,T模块与L模块(侧面模块),下面详细介绍下这个模块。 1.1 L模块(lateral module
原创
发布博客 2017.02.10 ·
3451 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏
加载更多