发现新方法,快速获取QQ群成员只需这几步!

前言

最近在工作中遇到了需要将QQ群成员导出的问题,查找了网上之前的教程,通过官网直接导出群成员,发现这个已经失效了。

目前只能导出本人是管理员的群,但如果是非管理员,应该如何导出呢?

小编又不停的找网上其他教程,最终终于发现一个非常不错的用于开发QQ机器人的开源项目,可以将QQ各种功能操作生成API接口,其中就有获取QQ群成员,好了,开始我们的操作。

首先,需要在电脑上安装LLOneBot,下载地址:https://github.com/super1207/install_llob/releases

直接下载llob_install.exe,双击打开软件(需要先关闭QQ进程),显示如下图界面,表示安装完成,可以关闭窗口了。

这时,我们打开QQ软件,点击设置,就可以看到多出来两个选项,这表示安装成功了。

最后我们再测试一下,浏览器访问:http://localhost:3000

如果显示“LLOneBot server 已启动”,表示API服务已经启动成功,现在开始调用接口。

小编使用fastapi来调用的这个接口,代码如下:

import io
import re

from fastapi.responses import StreamingResponse
import pandas as pd
import requests
from fastapi import FastAPI, Query

app = FastAPI()
API_URL = "http://localhost:3000"


def get_group_members(params: dict):
    path = "/get_group_member_list"
try:
# 发送GET请求
        response = requests.get(API_URL + path, params=params)

# 检查请求是否成功(状态码200表示成功)
if response.status_code == 200:
# 解析JSON响应
return response.json()
else:
return "Error: Request failed"
except requests.exceptions.RequestException as e:
# 请求异常处理
return f"Error: {e}"

def clean_string(value):
if isinstance(value, str):
# 移除非法字符
return re.sub(r'[\x00-\x1F\x7F]', '', value)
return value


@app.get("/export_group_members")
def export_group_members_to_excel(group_id: int):
    params = {"group_id": group_id}
    res = get_group_members(params)

if isinstance(res, dict) and "data" in res:
        filtered_data = [
            {
"user_id": {member['user_id']",
"nickname": clean_string(member["nickname"]),
"role": member["role"],
"qq_level": member["qq_level"]
            }
for member in res["data"]
        ]

# 创建一个 DataFrame
        df = pd.DataFrame(filtered_data)

# 将 DataFrame 保存到一个 BytesIO 对象中
        output = io.BytesIO()
        df.to_excel(output, index=False, engine='openpyxl')
        output.seek(0)

return StreamingResponse(output, media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
                                 headers={"Content-Disposition": f"attachment; filename={group_id}.xlsx"})
else:
return {"code": 500, "message": "Failed to retrieve data"}

启动fastapi项目,访问:http://127.0.0.1:8000//export_group_members?group_id=群号 就可以将所有群成员保存到excel文件中了,是不是很简单?

好了,今天的教程分享到此结束,关注我,了解更多前沿教程~

爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值