题目大意:
给定n个数轴上特殊的开区间(l,r),m次询问,每次询问(a,b)之间最多有多少个不相交的特殊区间。(1<=n,m<=100000,0<=l,r,a,b<=1000000000)
解题思路:
先把区间及询问离散化。
由于要求的区间不相交,所以一旦一个区间覆盖了另一个区间,该区间就没有用了,可以去掉。处理时先把区间按l为第一关键字从小到大,r为第二关键字从大到小排序,然后从第一个开始入栈,如果栈顶区间右端点大于等于当前区间右端点就将栈顶区间弹出。
可以发现这样处理以后剩下的区间左右端点都是单调递增的。那么对于一个询问(a,b),按贪心的思想,肯定是从离左端点最近的区间开始依次按要求拿最优,但这样的复杂度是O( n2 )的,怎么优化呢?
于是想到了倍增,r[i][j]表示从数轴上i开始取 2j 个合法区间后的右端点位置,预处理时扫描一边,i右侧离i最近的区间的右端点就是r[i][0],然后r[i][j]=r[r[i][j-1][j-1]了。处理时就像跳lca的第二段一样就可以了(详见代码中solve函数)。
时间复杂度为O(nlogn)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#define ll long long
using namespace std;
int getint()
{
int i=0,f=1;char c;
for(c=getchar();(c<'0'||c>'9')&&c!='-';c=getchar());
if(c=='-')f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
const int N=100005;
struct node
{
int l,r;
inline friend bool operator < (const node &a,const node &b)
{
if(a.l!=b.l)return a.l<b.l;
return a.r>b.r;
}
}a[N],q[N];
int n,m,mx,b[N<<2];
int top,stk[N];
int r[N<<2][20];
void lsh()
{
sort(b+1,b+mx+1);
mx=unique(b+1,b+mx+1)-b-1;
for(int i=1;i<=n;i++)
{
a[i].l=lower_bound(b+1,b+mx+1,a[i].l)-b;
a[i].r=lower_bound(b+1,b+mx+1,a[i].r)-b;
}
for(int i=1;i<=m;i++)
{
q[i].l=lower_bound(b+1,b+mx+1,q[i].l)-b;
q[i].r=lower_bound(b+1,b+mx+1,q[i].r)-b;
}
}
void pre()
{
sort(a+1,a+n+1);
for(int i=1;i<=n;i++)
{
while(a[stk[top]].r>=a[i].r&&top)top--;
stk[++top]=i;
}
n=top;
for(int i=1;i<=n;i++)a[i]=a[stk[i]];
int p=1;
for(int i=1;i<=mx;i++)
{
if(i>a[p].l)++p;
if(p>n)break;
r[i][0]=a[p].r;
}
for(int j=1;(1<<j)<=mx;j++)
for(int i=1;i<=mx;i++)
r[i][j]=r[r[i][j-1]][j-1];
}
void solve(int x,int y)
{
int ans=0;
for(int i=19;i>=0;i--)
if(r[x][i]&&r[x][i]<=y)
ans+=(1<<i),x=r[x][i];
cout<<ans<<'\n';
}
int main()
{
//freopen("lx.in","r",stdin);
while(scanf("%d%d",&n,&m)!=EOF)
{
mx=top=0;
memset(r,0,sizeof(r));
for(int i=1;i<=n;i++)
{
a[i].l=getint(),a[i].r=getint();
b[++mx]=a[i].l,b[++mx]=a[i].r;
}
for(int i=1;i<=m;i++)
{
q[i].l=getint(),q[i].r=getint();
b[++mx]=q[i].l,b[++mx]=q[i].r;
}
lsh();
pre();
for(int i=1;i<=m;i++)
solve(q[i].l,q[i].r);
}
return 0;
}