解线性方程组的Jacobi迭代法和Gauss-Seidel迭代法

#include <math.h>
#include <stdio.h>
#define eps 0.0001
#define max 100
#define N 10

double norm_inf(double x[],int n)
{
 double norm;
 int i;
 norm=fabs(x[0]);
 for(i=1;i<n;i++)
 {
  if(fabs(x[i])>norm)
   norm=fabs(x[i]);
 }
 return norm;

void jacobi(double a[N][N],double g[N],int n)
{
 double b[N][N]={0},x0[N],x1[N],x1_x0[N],norm,temp;
 int i,j,k;
 for(i=0;i<n;i++)
 {
  g[i]=g[i]/a[i][i];
  for(j=0;j<n;j++)
  {
   if(i==j)
    continue;
   b[i][j]=-a[i][j]/a[i][i];
  }
 }
 for(i=0;i<n;i++)
 {
  x0[i]=0;
  x1[i]=1;
  x1_x0[i]=x1[i]-x0[i];
 }
 k=0;
 norm=norm_inf(x1_x0,n);
 while((norm>=eps)&&(k<max))
 {
  for(i=0;i<n;i++)
   x0[i]=x1[i];
  for(i=0;i<n;i++)
  {
   temp=0;
   for(j=0;j<n;j++)
    temp=temp+b[i][j]*x0[j];
   x1[i]=temp+g[i];
   x1_x0[i]=x1[i]-x0[i];
  }
  norm=norm_inf(x1_x0,n);
  k++;
 }
 for(i=0;i<n;i++)
  printf("x[%d]=%lf/n",i,x1[i]);
 printf("%d times iteration./n",k);
}

void seidel(double a[N][N],double g[N],int n)
{
 double b[N][N]={0},x0[N],x1[N],x1_x0[N],norm,temp;
 int i,j,k;
 for(i=0;i<n;i++)
 {
  g[i]=g[i]/a[i][i];
  for(j=0;j<n;j++)
  {
   if(i==j)
    continue;
   b[i][j]=-a[i][j]/a[i][i];
  }
 }
 for(i=0;i<n;i++)
 {
  x0[i]=0;
  x1[i]=1;
  x1_x0[i]=x1[i]-x0[i];
 }
 k=0;
 norm=norm_inf(x1_x0,n);
 while((norm>=eps)&&(k<max))
 {
  for(i=0;i<n;i++)
   x0[i]=x1[i];
  for(i=0;i<n;i++)
  {
   temp=0;
   for(j=0;j<=i-1;j++)
    temp=temp+b[i][j]*x1[j];
   for(j=i+1;j<n;j++)
    temp=temp+b[i][j]*x0[j];
   x1[i]=temp+g[i];
   x1_x0[i]=x1[i]-x0[i];    
  }
  norm=norm_inf(x1_x0,n);
  k++;
 }
 for(i=0;i<n;i++)
  printf("x[%d]=%lf/n",i,x1[i]);
 printf("%d times iteration./n",k);
}

int main()
{
 double a[N][N]={{5,2,3,2},{2,4,1,-2},{1,-3,4,3},{3,2,2,8}},g[N]={-1,5,4,-6};
 double b[N][N]={{5,2,3,2},{2,4,1,-2},{1,-3,4,3},{3,2,2,8}},f[N]={-1,5,4,-6};
 jacobi(a,g,4);
 printf("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/n");
 seidel(b,f,4);
 return 0;

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值