stata实证之前通常处理步骤

1. 剔除缺失数据

在主回归文件有缺失内容时,剔除掉缺失值

keep if _merge==3

数据处理结束——删除因变量缺失的数据

drop if missing(size, lev, growth, roa, cashflow, btom, largesthold,dyratio,dgjhold,
dgjwage,ncskew,duvol,sigma,ret,ipoage,board,ind_board, yretwd,inholding,analysts,
industrycode,soe)

在回归的过程中,缺失值不会参与回归。有缺失值的那一行默认不会参与到回归中,因此可以在之前将缺失变量进行删除。

ps.在面对一些具体的数据缺失

a. 分子的财务数据缺失都填充为0

2. 剔除金融类上市公司

drop if substr(indcd,1,1)=="J"

3. 剔除当年新上市公司

a. 合并公司上市年份

b.删除公司年龄<1的数据

4. 剔除st公司

可通过下载数据股票代码不分筛选

代码选择>代码筛选>股票市场分类中选择全部A股>ST&非ST中选择非ST>证监会行业分类剔除金融保险业

5. 删除有特殊处理数据

### Stata 实证分析中的固定效应模型 在进行实证分析时,固定效应模型是一种常用的方法来控制不可观测的异质性因素。这些因素可能随时间不变但在个体间存在差异。为了在 Stata 中实现这一目标,通常会采用面板数据分析框架。 #### 数据准备 首先,确保数据集是以宽表或长表形式存在的面板数据结构。对于大多数情况而言,长表更为常见且易于处理。使用 `xtset` 命令指定面板变量(通常是实体ID)和时间变量: ```stata xtset entity_id time_variable ``` 这一步骤告知 Stata 当前的数据是一个面板数据集,并指定了相应的识别符[^2]。 #### 运行固定效应回归 接着,可以通过两种方式之一来进行固定效应回归:一是差分法;二是引入虚拟变量表示各个截面单元。然而最简便的方式是利用内置命令 `xtreg` 并加上选项 `, fe` 来指示执行固定效应估计: ```stata xtreg dependent_variable independent_variables, fe vce(cluster entity_id) ``` 这里 `dependent_variable` 是因变量名称,而 `independent_variables` 则代表自变量列表。参数 `vce(cluster entity_id)` 表明聚类标准误按实体 ID 聚类计算,从而提高结果稳健性[^1]。 #### 结果解释与诊断 得到的结果表格中,“_cons”项不再具有实际意义因为已经去除了各组别的平均影响。关注的重点应放在其他系数上以及它们对应的 p-values 和置信区间。此外,还可以进一步测试是否存在显著的时间趋势或其他模式。 #### 后续操作建议 完成基本建模之后,应当继续探讨模型设定合理性、残差特性等问题。比如可以尝试加入交互作用项或者二次项改进拟合度;也可以通过 Hausman 检验比较随机效应模型与当前固定的优劣之处。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值