

10月28日,英伟达创始人兼CEO黄仁勋在GTC华盛顿发表主题演讲。本次演讲涵盖了计算范式的转变、NVIDIA的核心、6G、量子计算、AI需求的“双重指数级增长”、NVIDIA“极端协同设计”解决方案、机器人、自动驾驶、AI工厂等内容。
本次主题演讲中,黄仁勋还宣布展示了一系列新产品、新技术以及覆盖电信、科研、网络安全和自动驾驶的重磅合作与新计划。
新产品与技术:
NVIDIA Arc (Aerial RAN computer): 一条全新的产品线,结合Grace CPU、Blackwell GPU和ConnectX网络,打造软件定义的、可编程的基站,同时处理6G无线通信和AI。
NVQLink: 一种全新的互连技术,旨在连接QPU(量子处理单元)和GPU超级计算机,实现关键的量子纠错、AI校准和混合模拟。
Blackwell: GB200 NVL72是通过“极端协同设计”打造的机架级计算机,实现了10倍的代际性能飞跃,旨在以最低成本生成Token。黄仁勋透露,Blackwell已在美国亚利桑那州全面投产,响应“将制造业带回美国”的号召。
Vera Rubin: Blackwell的下一代平台——Vera Rubin。这是一个完全无线缆、100%液冷设计的第三代NVLink 72机架规模计算机,并已在实验室中运行。黄仁勋透露,在出货GB200的同时,正在准备 Rubin 的投产,大约在明年这个时候,也许会更早一点。
Omniverse DSX:用于设计、建造和运营千兆瓦级AI工厂的数字孪生蓝图。
NVIDIA Drive Hyperion: 一个标准化的Robotaxi平台,配备完整的传感器套件。
新合作与计划:
电信(6G): 黄仁勋宣布与全球第二大电信设备制造商Nokia建立重要合作伙伴关系,共同构建基于NVIDIA Arc的6G和AI基站。
量子计算:宣布17家量子计算行业公司和8个美国能源部(DOE)实验室(包括Berkeley, Los Alamos等)支持NVQLink。
AI超级计算机:宣布美国能源部(DOE)正与NVIDIA合作,共同建造七台全新的人工智能超级计算机。
网络安全:宣布与CrowdStrike合作,创建云端和边缘AI Agent,实现“光速”网络安全防御。
企业AI:宣布与Palantir合作,加速其Ontology平台,以光速和超大规模处理结构化及非结构化数据。
Robotaxi:宣布与Uber建立合作伙伴关系,将基于NVIDIA Drive Hyperion的Robotaxi接入其全球网络。
本次演讲中,黄仁勋指出,AI不是“工具”,而是“执行者”,过去的软件是工具,需要人去使用;而AI是能够“执行工作”的,AI甚至能使用工具。这使得AI能够触及万亿美元经济主体。
我们正经历“双重指数级增长”。第一重来自AI的三个Scaling Law(预训练、后训练、“思考”)本身带来的计算需求的指数级增长;第二重来自AI越智能、使用量越大的“良性循环”。这两个指数级增长正同时给全球的计算资源带来巨大压力。
01
GTC,AI界的“超级碗”
黄仁勋:华盛顿特区!华盛顿特区,欢迎来到GTC。身处此地,我真的为美国感到无比激动和自豪。刚才的视频是不是很棒?谢谢。NVIDIA的创意团队总是这么出色。欢迎大家来到GTC。今天我们有很多内容要与大家分享。GTC是一个我们共同探讨行业、科学、计算、当下与未来的盛会。所以我今天有很多内容要分享。但在开始前,我要感谢所有赞助此次盛会的合作伙伴。大家会在展会期间的各个地方看到他们,他们在此与大家交流。这真的非常棒,没有所有生态系统合作伙伴的支持,我们不可能取得今天的成就。
人们都说,GTC是AI界的“超级碗”。既然是“超级碗”,当然就该有精彩的赛前秀。大家觉得刚才的赛前秀,和我们的全明星运动员及全明星阵容如何?看看他们。不知怎么回事,最后好像我才是最“有料”的那个。大家觉得呢?我可不知道这是不是我特意安排的。
02
加速计算的时代已来临,但它截然不同
正如大家在视频中看到的,NVIDIA发明了一种新的计算模型,这是60年来的第一次。一种新的计算模型极难诞生,它需要漫长的时间和一系列条件的成熟。我们当初发明这种计算模型,是因为我们想解决那些通用计算机,即普通计算机无法解决的问题。我们还预见到,总有一天,晶体管的数量会持续增长,但其性能和功耗的改善将放缓。物理定律将限制摩尔定律的延续。而今,这个时刻已经到来。这个被称为登纳德缩放 (Dennard scaling) 的定律,已在近十年前失效。事实上,晶体管的性能及其功耗的改善已大幅放缓,但晶体管的数量却仍在增长。我们很早就洞察到了这一点。三十年来,我们一直在推动一种称之为“加速计算 ”的计算形式。我们发明了GPU,发明了名为CUDA的编程模型。我们认识到,如果我们能加入一个处理器来利用越来越多的晶体管,应用并行计算,并将其与顺序处理的CPU相配合,我们就能够将计算能力推向一个远远超越以往的水平。现在,这个时刻真的到来了。我们已经看到了这个拐点。加速计算的时代已经来临。
然而,加速计算是一种截然不同的编程模型。你不能简单地把CPU软件,那种手动编写的、顺序执行的软件,直接放到GPU上,就指望它能正常运行。事实上,如果真这么做,它反而会运行得更慢。因此,你必须发明新的算法,创建新的库,甚至必须重写整个应用程序。这就是为什么它花费了如此漫长的时间。我们花了近30年才走到今天。但我们坚持了下来,一个领域一个领域地去攻克。
03
英伟达的宝藏
这就是我们公司的宝藏。大多数人只谈论GPU。GPU固然重要,但如果没有一个驾驭其上的编程模型,没有对该模型坚持不懈的投入,没有保持其跨代兼容性——我们现在即将从CUDA 13迈向CUDA 14,确保数亿个GPU在各种计算机上都能完美兼容——那么开发者就不会为这个计算平台开发应用。如果我们不创建这些库,开发者就不知道如何运用算法来淋漓尽致地发挥架构的性能。我们一个应用接着一个应用地开发。这才是我们公司真正的宝藏。
cuLitho,即计算光刻 (computational lithography)。我们花了近七年时间才推出cuLitho,现在TSMC、Samsung和ASML都在使用它。这是一个用于计算光刻的卓越软件库,而计算光刻是芯片制造的第一步。还有用于CAE应用的稀疏求解器。cuOpt,一个数值优化库,它几乎打破了所有相关记录,解决了诸如旅行商问题,即如何在供应链中连接数百万产品与数百万客户。Warp,一个用于CUDA的Python求解器,专为模拟而生。cuDF,一种数据帧处理方法,能极大加速SQL和数据帧数据库的处理。cuDNN,这个库是AI发展的起点。而在它之上的Megatron Core库,使我们能够模拟和训练超大型语言模型。这样的例子还有很多。MONAI,这个极其重要,它是全球第一的医学成像AI框架。顺便一提,我们今天不会过多讨论医疗健康,但请务B观看Kimberly的主题演讲,她将深入介绍我们在此领域所做的工作。例子还有很多:基因组学处理。Aerial,请大家注意,我们今天将宣布一项与此相关的重大事项。cuQuantum,用于量子计算。
这些只是我们公司350个不同软件库中的一部分代表。每一个库都为加速计算重新设计了必需的算法。每一个库都使得所有生态系统合作伙伴能够充分利用加速计算的优势。每一个库都为我们开辟了新的市场。让我们看一看CUDA X能做些什么。
(视频片段展示CUDA X在各个行业的应用:游戏物理、科学模拟、医学成像、自动驾驶、机器人技术、数据处理、AI训练、量子模拟)
黄仁勋:是不是很不可思议?你们刚才看到的一切都是模拟,没有美术设计,没有动画制作。这就是数学之美。这背后是深奥的计算机科学和数学,它所呈现的美丽简直令人难以置信。视频涵盖了各个行业,从医疗健康、生命科学到制造业、机器人技术、自动驾驶汽车、计算机图形,乃至电子游戏。大家看到的第一个镜头,就是NVIDIA运行的第一个应用程序。那是我们1993年的起点。我们始终坚信自己所追求的事业。很难想象,当年那个能让《VR战士》(Virtual Fighter) 场景动起来的公司,会坚信自己能走到今天。这确实是一段非凡的旅程。我要感谢所有NVIDIA员工为此付出的一切。这真的太了不起了。
今天我们要讨论的行业有很多。我将涵盖AI、6G、量子、模型、企业计算、机器人技术和工厂。我们开始吧。我们有很多内容要分享,有很多重磅消息要宣布,还有很多会让你们大感意外的新合作伙伴。
04
重磅发布:NVIDIA Arc、与Nokia合作
电信,是我们的经济、产业和国家安全的支柱与命脉。然而,曾几何时,从无线技术发端起,我们定义了技术,我们制定了全球标准,我们将美国技术推广到世界各地,让全世界都能在美国的技术和标准之上发展。但这种情况已经是很久以前的事了。如今,全球的无线技术主要部署在外国技术之上。我们的基础通信架构建立在外国技术之上。这种局面必须停止。我们有机会改变这一切,尤其是在当前这个根本性的平台转型期。
众所周知,计算机技术是几乎所有行业的基础。它是科学最重要的工具,也是工业最重要的工具。我刚才提到,我们正处于一场平台转型中。这场转型,是我们重返主导地位、开始用美国技术进行创新的千载难逢的机会。今天,我们正式宣布,我们将着手实现这一目标。我们将与Nokia建立重要的合作伙伴关系。Nokia是全球第二大电信设备制造商。这是一个价值3万亿美元的庞大产业,仅基础设施就价值数千亿美元,全球部署了数百万个基站。如果我们能够合作,我们就能在这项不可思议的新技术——一项从根本上基于加速计算和AI的技术,之上构建未来,让美国,站在这场6G革命的中心。
因此,今天我们宣布NVIDIA推出一条全新的产品线。它叫做NVIDIA Arc,即Aerial无线电网络计算机 (Aerial RAN computer),简称Arc。Arc由三项基本新技术构建而成:Grace CPU、Blackwell GPU,以及我们专为此应用设计的ConnectX Mellanox ConnectX网络。这一切使我们能够运行我之前提到的CUDA X库——Aerial。Aerial本质上是一个运行在CUDA X之上的无线通信系统。我们将首次创造出一种软件定义的、可编程的计算机,它能同时进行无线通信和AI处理。这是完全革命性的。我们称之为NVIDIA Arc。Nokia将与我们合作,集成我们的技术,并重写他们的技术栈。Nokia是一家拥有7000项5G核心专利的公司,在电信领域,很难想象有比这更杰出的领导者。我们将与Nokia携手,让他们把NVIDIA Arc作为他们未来的基站。
NVIDIA Arc还与Nokia当前的基站AirScale兼容。这意味着,我们将利用这项新技术,为全球数百万基站升级到6G和AI。6G和AI的结合具有根本性的意义。首先,我们将首次能够运用AI技术,即“AI for RAN”,来提高无线电通信的频谱效率。通过利用人工智能和强化学习,根据周围环境、流量、移动性、天气等因素实时调整波束成形,我们就能提高频谱效率。全球约有1.5%到2%的电力消耗在无线电频谱上。因此,提高频谱效率,不仅能让我们在不增加能耗的前提下,通过无线网络传输更多数据。
我们能做的另一件事,是“AI on RAN” (RAN上的AI)。这是一个全新的机遇。回想一下,互联网实现了通信,而像AWS这样极具智慧的公司,在互联网之上构建了云计算系统。现在,我们将在无线电信网络之上做同样的事情。这个新的云将是一个边缘工业机器人云。这就是“AI on RAN”。所以,第一是“AI for RAN”,提高无线电频谱效率;第二是“AI on RAN”,即实现无线电信的云计算。云计算将能直达网络边缘,部署到那些没有数据中心的地方,因为我们的基站遍布全球。这项宣布令人无比兴奋。Nokia的CEO,Justin Hotard,我想他应该在现场。感谢你们的合作。感谢你们帮助美国将电信技术带回美国。这是一次非常、非常了不起的合作。非常感谢。
05
连接QPU与GPU:NVQLink、CUDA Q、与DOE合作建造七台AI超算
接下来谈谈量子计算。1981年,粒子物理学家、量子物理学家Richard Feynman构想了一种新型计算机,它能够直接模拟自然,因为自然本身就是量子的。他称之为量子计算机。40年后,这个行业取得了一项根本性突破。就在去年,一项根本性突破诞生了:现在我们已经有可能制造出一个逻辑量子比特。一个相干、稳定且经过纠错的逻辑量子比特。而这一个逻辑量子比特,可能由几十个,甚至几百个物理量子比特协同工作组成。如大家所知,量子比特,这些粒子极其脆弱,非常容易变得不稳定。任何观测、任何采样、任何环境变化都可能导致它“退相干”。因此,这需要一个控制极其精良的环境,现在还需要大量的物理量子比特协同工作,让我们能够在这些所谓的辅助量子比特或伴随量子比特上进行纠错,通过纠错来推断出那个逻辑量子比特的状态。
目前有各种不同类型的量子计算机:超导、光子、陷阱离子、稳定原子等等,构建量子计算机的方式多种多样。现在,我们意识到,将量子计算机直接连接到GPU超级计算机至关重要。这样我们才能执行纠错,才能利用人工智能进行校准和控制,才能进行混合模拟——让正确的算法运行在GPU上,正确的算法运行在QPU (量子处理单元) 上,让GPU和QPU这两种处理器、两台计算机并肩协作。这就是量子计算的未来。让我们来看一下。
(视频片段解释了量子计算的挑战、纠错的需求,并介绍了NVIDIA QLink作为QPU和GPU之间的互连,用于纠错、AI校准以及使用CUDA Q平台的混合量子-经典计算。)
黄仁勋:哇,这个舞台真的太长了。我们做CEO的,不只是坐在办公桌前打字。这真是个体力活。所以今天,我们宣布推出NVQLink。NVQLink的实现得益于两个方面。首先,这项互连技术能实现量子计算机的控制与校准、量子纠色,并且能连接QPU和我们的GPU超级计算机这两类计算机,以进行混合模拟。其次,它具有完全的可扩展性。它不仅能为当今少数几个量子比特进行纠错,更能为未来进行纠错。未来,我们将把量子计算机从现今的几百个量子比特,扩展到数万乃至数十万个量子比特。因此,我们现在拥有了一个能够实现控制、协同模拟、量子纠错,并能扩展至未来的架构。
我们获得的行业支持是空前的。随着CUDA Q的问世——大家知道,CUDA最初是为GPU和CPU协同的加速计算而设计的,其核心思想是使用正确的工具做正确的事。现在,CUDA Q在CUDA的基础上进行了扩展,得以支持QPU,让QPU和GPU这两种处理器协同工作,计算任务可以在短短几微秒内在其间来回切换,这是与量子计算机协作所必需的极低延迟。CUDA Q是一项重大突破,已被众多开发者采用。今天我们宣布,有17家量子计算机行业的公司支持NVQLink。并且,让我非常兴奋的是,还有八个来自美国能源部的实验室:Berkeley、Brookhaven、芝加哥的Fermilab、Lincoln Laboratory、Los Alamos、Oak Ridge、Pacific Northwest和Sandia National Lab。几乎所有的DOE实验室都已与我们接洽,他们正与我们的量子计算机生态系统以及这些量子控制器供应商合作,目标是将量子计算融入未来的科学探索。
我还有一项重要宣布。今天,我们宣布美国能源部正在与NVIDIA合作,共同建造七台全新的人工智能超级计算机,以推动美国的科学进步。我必须特别感谢Chris Wright部长。他为DOE注入了强大的活力,一股澎湃的能量与热情,致力于确保美国重返科学的领导地位。正如我所说,计算是科学的基础工具,而我们正同时经历几场平台转型。一方面,我们正转向加速计算,这就是为什么未来每一台超级计算机都将是基于GPU的。另一方面,我们正迈向AI时代。AI将与基于第一性原理的求解器 (principal solvers) 和模拟协同工作——传统的物理模拟不会消失,而是会被AI增强、扩展,AI代理模型将与之协同。我们也知道,经典的原理求解器可以通过量子计算得到增强,以更深入地理解自然状态。我们还知道,未来我们将有海量的信号和数据需要从现实世界中采样,遥感将比以往任何时候都更加重要。而对于那些实验室而言,除非它们转变为机器人化工厂或机器人化实验室,否则根本无法以我们所需的规模和速度进行实验。所有这些不同的技术,正同时汇入科学领域。Wright部长深刻理解这一点,他希望DOE抓住这个机遇,为自身发展注入强劲动力,确保美国保持在科学的最前沿。我要为此感谢在座的各位。谢谢。
06
AI远不止聊天机器人:重塑计算堆栈
我们来谈谈AI。什么是AI?大多数人会说AI就是聊天机器人,这当然没错。毫无疑问,ChatGPT是大众认知中AI的代表。然而,正如大家刚才所见,那些科学超级计算机并不会用来运行聊天机器人,它们将用于基础科学研究。科学,AI,AI的世界远不止聊天机器人。当然,聊天机器人极其重要,AGI也至关重要,实现AGI仍需依赖深度的计算机科学、强大的计算能力和持续的重大突破。但除此之外,AI的内涵要广泛得多。事实上,我将从几个不同的角度来描述AI。
第一种理解AI的方式是:它彻底重塑了计算堆栈。过去,我们开发软件的方式是手动编码,代码在CPU上运行。而今天,AI是机器学习、是训练、是数据密集型编程,它由AI训练和学习,并在GPU上运行。为了实现这一点,整个计算堆栈都已改变。请注意,在这个堆栈里,你看不到Windows,也看不到CPU。你看到的是一个完全不同、一个从根本上就不同的技术堆栈。这一切都始于对能源的需求。而这,正是我们的政府,Trump总统值得高度赞誉的另一个领域。他所倡导的支持能源发展的倡议,他深刻认识到这个行业需要能源来实现增长,需要能源来推动进步,我们需要能源来赢得胜利。他的这份认知,以及他推动国家力量支持能源增长的决心,彻底改变了游戏规则。如果这一切没有发生,我们现在可能已陷入困境。我为此要感谢Trump总统。
能源之上是 GPU。这些 GPU 被连接并构建到基础设施中,我稍后会展示。在这些基础设施之上,消耗着巨额的能源,这些能源随后通过称为 GPU 超级计算机的新型机器转化为数字。这些数字被称为 Token。Token 不妨说是人工智能的语言、计算单元和词汇表。你几乎可以 Tokenize 任何东西。你当然可以 Tokenize 英文单词。你可以 Tokenize 图像,这就是你能够识别或生成图像的原因。你可以 Tokenize 视频,Tokenize 3D 结构。你可以 Tokenize 化学物质、蛋白质和基因。你甚至可以 Tokenize 细胞。你可以 Tokenize 几乎任何有结构、有信息内容的东西。一旦你能够 Tokenize 某个事物,AI 就能学习它的语言及其含义。一旦 AI 掌握了该语言的含义,它就能进行翻译、回应 (就像你回应一样,就像你与 ChatGPT 互动一样),并且能够生成内容 (就像 ChatGPT 能生成内容一样)。因此,你看到 ChatGPT 所做的所有基础工作,你只需想象一下:如果对象是蛋白质呢?如果它是化学物质呢?如果它是像工厂那样的 3D 结构呢?如果它是一个机器人,而 Token 是用来理解行为、Tokenize 动作和行动呢?所有这些概念基本上是相通的。这就是 AI 能够取得如此非凡进步的原因。而在这些模型之上,就是应用。
Transformer 并非一个通用模型,它是一个极其有效的模型,但并不存在唯一的通用模型。真正具有普遍性的是 AI 的影响力。模型有非常多不同的类型。在过去几年里,我们迎来了多模态领域的发明和创新突破。模型有非常多不同的类型。有 CNN 模型,即卷积神经网络模型。有状态空间模型,有图神经网络模型,当然还有多模态模型。还有我刚才描述过的所有不同的 Tokenization 和 Token 方法。你可以有在空间理解上优化的模型,即为空间感知优化的模型。你也可以有为长序列优化的模型,用于识别长周期内的细微信息。模型有非常多不同的类型。在这些模型架构之上,在这些模型架构之上是应用。
07
AI不是工具,AI是在“执行工作”
对于过去的软件,我们有一个深刻的理解,一个对人工智能的深刻观察,那就是过去的软件产业是关于创造工具的。Excel 是工具,Word 是工具,网页浏览器也是工具。我之所以知道它们是工具,是因为它们需要你去使用。工具行业,就像螺丝刀和锤子一样,其规模终究是有限的。以 IT 工具为例,比如数据库工具,整个 IT 工具市场大约是一万亿美元的规模。但 AI 不是工具。AI 是在执行工作。这就是根本性的区别。事实上,AI 是能够使用工具的“执行者”。我非常兴奋的成果之一,是 Irvin 在 Perplexity 所做的工作。Perplexity 能够使用网页浏览器来预订假期或购物。这本质上就是 AI 在使用工具。Cursor 也是一个 AI,一个我们在 NVIDIA 内部使用的 AI Agent 系统。NVIDIA 的每一位软件工程师都在使用 Cursor。它极大地提升了我们的生产力。它基本上是我们每位软件工程师写代码时的“伙伴”,它也会使用工具,它使用的工具叫 VS Code。所以,Cursor 是一个使用 VS Code 的 AI Agent 系统。
在所有这些不同的行业中,无论是聊天机器人还是数字生物学 (在这些领域我们有 AI 助理研究员),再比如Robotaxi?在Robotaxi内部,AI 司机虽然是无形的,但它显然存在。这个司机在“工作”,而它用来完成工作的“工具”就是汽车。因此,我们迄今为止创造的一切,整个世界,我们所创造的一切都是工具,是供我们使用的工具。而现在,技术第一次能够“执行工作”,帮助我们提高生产效率。这样的机会不胜枚举,这正是 AI 能够触及 IT 行业从未触及的经济领域的原因。IT 行业的规模是几万亿美元,在全球 100 万亿美元的经济总量中,它扮演的是“工具”的支撑角色。而现在,AI 第一次将深入到那 100 万亿美元的经济主体中,使其更具生产力、增长更快、规模更大。我们正面临严重的劳动力短缺,而能够增强劳动力的 AI 将帮助我们实现增长。
08
AI工厂”的诞生
现在,从科技产业的角度来看,有趣的一点是:AI 不仅是解决新经济领域的新技术,AI 本身也是一个新产业。正如我之前解释的,Token 就是这些数字。当你 Tokenize 所有不同模态的信息后,你需要一个“工厂”来生产这些数字。这与过去的计算机和芯片行业不同。看看过去的芯片行业,它在价值几万亿美元的 IT 行业中大约只占 5% 到 10%,甚至更少,可能只有 5% 左右。原因是运行 Excel、浏览器或 Word 并不需要太多的计算。真正的计算是由我们人类完成的。但在 AI 这个新世界里,你需要一台能时刻理解上下文的计算机。它无法预先计算好一切。因为你每次使用 AI、每次要求 AI 做某事,上下文都是不同的。所以 AI 必须处理所有这些信息。例如,在自动驾驶汽车中,它必须处理车辆所处的环境上下文。这就是上下文处理。AI 还需要理解你要求它执行的指令。然后,它必须逐步分解问题、进行推理、制定计划并执行。这个过程中的每一步都需要生成海量的 Token。这就是为什么我们需要一种新型系统,我称之为“AI 工厂”。
这确确实实是一个 AI 工厂。它与过去的数据中心不同。它之所以是 AI 工厂,因为它只生产一种东西。不像过去的数据中心,它们什么都做——为我们所有人存储文件、运行各种不同的应用程序。你可以像使用个人电脑一样使用那些数据中心,运行各种应用。你今天可以用它玩游戏,明天可以用它浏览网页,你还可以用它来处理会计事务。所以,那是过去的计算机,是通用计算机。我现在谈论的这种计算机是一个工厂。它基本上只运行一件事——运行 AI。它的目的,它的目的被设计为生产尽可能有价值的 Token,这意味着 Token 必须足够智能。同时,你希望以极高的速率生产这些 Token,因为当你向 AI 提问时,你希望它能立即响应。请注意,在高峰时段,这些 AI 的响应正变得越来越慢,因为它们需要为海量的用户处理海量的工作。因此,你需要它以极高的速率生产有价值的 Loken,并且你需要它以高成本效益的方式生产。我刚才用的每一个词——价值、速率、成本效益——都与一个 AI 工厂、一个汽车工厂或任何工厂的逻辑完全一致。它绝对是一个工厂。而这些工厂,这些工厂是前所未有的。在这些工厂内部,是堆积如山的芯片。
09
我们面临“双重指数级增长”
这就引出了今天的话题。过去几年发生了什么?事实上,仅仅是去年,就发生了相当深刻的变化。你会发现,在年初,每个人都对 AI 怀有某种看法,普遍的态度是:这将是件大事,这是未来。但不知为何,就在几个月前,AI 的发展仿佛进入了“涡轮增压”模式。这背后有几个原因。首先,在过去几年里,我们找到了让 AI 变得远比以前更智能的方法。这不仅仅是关于预训练。预训练基本上就是把人类创造过的所有信息都交给 AI 去学习。其本质是记忆和泛化。这就像我们小时候上学,处于学习的第一个阶段。预训练的意义从来不在于此,就像学前班从来不是教育的终点。预训练只是在教授智能的基本技能,以便你理解如何去学习其他一切。没有词汇、不理解语言、不懂如何交流和思考,就不可能学会其他东西。下一步是后训练。在预训练之后的后训练,是教授 AI 各种技能:解决问题的技能、分解问题、进行推理、如何解数学题、如何编程、如何一步步思考这些问题、如何运用第一性原理推理。在这之后,才是计算力真正爆发的阶段。
如你所知,我们中的许多人,都上过学——对我来说,那是几十年前的事了。但自那时起,我学到了更多,思考了更多,因为我们总是在新的知识中不断“锚定”自己,我们不断地做研究,不断地在思考。“思考”才是智能的真正核心。因此,我们现在掌握了三种基本技术:我们有预训练技术,它仍需要海量的计算。我们有后训练技术,它需要更多的计算。而现在,“思考”这一步给基础设施带来了难以置信的计算负载,因为它在为我们每一个人进行思考。因此,AI 进行“思考”所需的计算量是极其庞大的。我过去常听到有人说,推理很容易。NVIDIA 应该专注于训练。他们会说 NVIDIA 擅长这个,所以他们应该去做训练。他们认为推理很简单。但“思考”怎么可能简单呢?复述记忆的内容很简单,背诵乘法表也很简单。但思考是困难的。这就是为什么这三个尺度,这三个新的 Scaling Law,正全速推进,给总计算量带来了如此巨大的压力。
现在,另一件事也发生了。得益于这三个Scaling Law,我们获得了更智能的模型。而更智能的模型需要更多的算力。但当你拥有了更智能的模型,你就获得了更高的智能,人们就会去使用它。你的模型越智能,使用它的人就越多。它现在更加“扎根”。它能够推理。它能够解决以前从未学过如何解决的问题,因为它现在可以去做研究、去学习相关知识,然后回来分解问题、推理如何回答你的提问、如何解决你的难题,并最终将其解决。大量的“思考”使模型变得更加智能。而模型越智能,所需的计算量就越大。但关键的转变发生在去年。去年,AI 行业迎来了转机。这意味着 AI 模型现在已经足够智能,它们值得、配得上你为之付费。NVIDIA 购买了 Cursor 的每一个许可证,我们非常乐意这样做。因为 Cursor 正在帮助我们年薪几十万美元的员工、软件工程师或 AI 研究员,将他们的生产力提高许多倍。所以我们当然非常乐意付费。这些 AI 模型已经足够优秀,值得人们付费。Cursor、11 Labs、Synthesia、Abridge、Open Evidence,这样的例子不胜枚举。当然,还有 OpenAI 和 Claude,这些模型现在非常出色,人们正纷纷为它们付费。正因为人们付费使用,使用量越来越大,而每一次使用都需要更多的计算,所以我们现在面临着“双重指数级增长”。第一个指数,是来自三个 Scaling Law 本身带来的计算需求的指数级增长。第二个指数是,模型越智能,使用它的人就越多,而使用它的人越多,它需要的计算就越多。这两个指数级增长正同时给全球的计算资源带来巨大压力。
10
“极端协同设计”:从芯片到AI工厂的重塑
而这一切,恰好发生在我之前提到过的“摩尔定律已基本终结”的时刻。所以问题是,我们该怎么办?如果我们面临着这两种指数级的需求增长,而我们又找不到降低成本的方法,那么这个正反馈系统——这个循环反馈系统,也就是我们常说的“良性循环”——就无法维持。这个循环对几乎所有行业、对任何平台型产业都至关重要。它曾对 NVIDIA 至关重要。我们现在已经实现了 CUDA 的良性循环。人们创造的应用越多,CUDA 就越有价值;CUDA 越有价值,购买 CUDA 计算机的人就越多;购买的 CUDA 计算机越多,就有越多的开发者愿意为其开发应用。NVIDIA 用了 30 年时间才终于实现了这个良性循环。而在 15 年后的今天,我们也为 AI 实现了这一点。AI 现在已经进入了它的良性循环。你越使用 AI,产生的利润就越多;产生的利润越多,就有越多的算力被投入到 AI 工厂中;AI 工厂的算力越多,AI 就变得越智能;AI 越智能,就有越多人和越多的应用来使用它,我们能解决的问题就越多。这个良性循环现在正在飞速运转。
我们现在要做的,是极大地降低成本。这样做的目的有两个:第一,改善用户体验。当你向 AI 发出提示时,它能更快地响应你。第二,保持这个良性循环的持续运转,通过降低成本,使其 (AI) 变得更智能,吸引更多人使用,如此循环往复。这个良性循环正在飞速运转。但是,在摩尔定律已达极限的当下,我们该如何做到这一点?答案就是“协同设计”。你不能再像过去那样,只管设计芯片,然后期望上层的东西能跑得更快。如果只靠设计芯片,你最多能做的,可能也就是每隔几年增加 50% 的晶体管。我们可以不断增加晶体管,TSMC 是一家了不起的公司,他们能提供很多晶体管。然而,这带来的只是百分比的增长,而非指数级的增长。我们需要的是“复合指数级”的增长,才能维持这个良性循环。我们称之为“极端协同设计”。
NVIDIA 是当今世界上唯一一家能够真正从零开始,同时思考新基础架构、计算机架构、新芯片、新系统、新软件、新模型架构和新应用的公司。在座的各位中,有许多人正处于这个技术栈的不同层级,并与 NVIDIA 携手合作。我们从根本上、从头开始重新架构所有的一切。然后,由于 AI 是一个如此庞大的问题,我们首先进行纵向扩展。我们创造了一台完整的计算机,这是有史以来第一次,一台计算机被纵向扩展至一整个机架。这整台设备就是一台计算机,一个 GPU。接着,我们通过发明一种新的 AI 以太网技术,进行横向扩展,我们称之为 SpectrmX Ethernet。所有人都会说:“以太网不就是以太网吗?”但我们的以太网早已不是你理解的那个以太网。SpectrmX Ethernet 是专为 AI 性能而设计的,这正是它如此成功的原因。即便如此,规模依然不够。就算我们用 AI 超级计算机和 GPU 填满这个房间,还是不够。因为 AI 的应用和用户数量仍在持续指数级增长。因此,我们将多个这样的数据中心连接在一起,我们称之为 SpectrmX GigaScale 扩展。通过这种方式,我们在一个极其庞大、极其彻底的层面上践行“协同设计”,其带来的性能收益是惊人的。这不再是每一代 50% 或 25% 的提升,而是远远多得多的飞跃。
11
10倍性能飞跃与最低成本Token
这是我们有史以来打造的、坦率地说,也是现代计算机史上最极致的协同设计计算机。自 IBM System/360 以来,我认为没有任何计算机像这样被从头到尾彻底重塑过。这个系统的创建过程极其艰难。我稍后会向你们展示它的优势所在。但本质上我们所做的,就是创造了 NVLink 72。如果我们打算制造一颗巨型芯片,一颗巨型 GPU,它大概就是这个样子。这达到了我们需要做的晶圆级处理的水平。这简直不可思议。所有这些芯片现在都被集成在一个巨型机架中。这个巨型机架让所有芯片协同工作,融为一体。这着实令人震撼。我来给你们展示一下它的好处。
它就是这个样子的。这是 NVLink 8。现在,这些模型变得如此庞大,我们的解决方法是把这个巨型模型分解为一大群“专家”。这有点像组建一个团队。这些专家各自擅长解决特定类型的问题,我们把一大群专家汇集在一起。于是,这个价值数万亿美元的巨型 AI 模型就拥有了所有这些不同的专家,我们把这些专家都部署在 GPU 上。现在,这是 NVLink 72。我们可以把所有芯片接入一个巨型的互联结构中,每一个专家都能彼此通信。因此,主控节点 (首席专家) 可以分发任务以及所有必需的上下文和提示,还有我们必须发送给所有专家的大量数据,大量的 Token。那些专家,无论哪一个专家被选中来解答问题,都会去尝试响应。然后它会一层接一层地执行这个过程。有时是 8 个专家,有时是 16 个,有时是 64 个,有时甚至是 256 个。但重点是,专家的数量越来越多。
那么,在 NVLink 72 上,我们有 72 个 GPU。因此,我们可以在一个 GPU 里放置四个专家。每个 GPU 最核心的任务是生成 Token,这取决于你 HBM 内存所拥有的带宽。我们用一个 HBM,一个 GPU 来为四个专家处理任务,而在之前的架构上,因为每台计算机最多只能放 8 个 GPU,我们必须把 32 个专家放进一个 GPU。所以,这一个 GPU 必须为 32 个专家处理任务,而在这个系统上,每个 GPU 只需要为 4 个专家处理。正因如此,速度差异是天壤之别。
这份报告刚出来。这是 SemiAnalysis 做的基准测试。他们做得非常非常深入。他们测试了所有能找到的 GPU。结果发现,能测试的 GPU 并不多。如果你看看实际能测试的 GPU 列表,大概 90% 都是 NVIDIA 的。所以,我们基本上是在和自己比较。但是,全球第二好的 GPU 是 H200,它可以运行所有工作负载。而 Grace Blackwell (GB200) 单个 GPU 的性能是它的 10 倍。现在,晶体管数量仅仅增加了两倍,你是如何做到 10 倍性能提升的呢?答案是:极致的协同设计。通过深刻理解 AI 模型未来的本质,并且我们跨越整个技术堆栈进行思考,我们才能为未来打造出这样的架构。
这意义非凡。它意味着我们现在能以更快的速度响应,但还有更重大的意义。接下来这个更重要。这表明,世界上成本最低的Token,是由 Grace Blackwell NVL72,这台最昂贵的计算机生成的。一方面,GB200 是最昂贵的计算机;另一方面,它的 Token 生成能力如此强大,以至于它能以最低的成本产出 Token。因为Grace Blackwell 的每秒 Token 生成数除以其总拥有成本 (TCO) 极具优势。这是生成 Token 成本最低的途径。通过这样做,我们提供了惊人的性能——10 倍的性能提升,以及 10 倍的成本降低,这样的良性循环才得以持续。
这就让我想到了我昨天刚看到的这张图。这是 CSP (云服务提供商) 的资本支出。最近总有人问我关于 CapEx 的问题。这是一个很好的观察角度。事实上,这是排名前六的 CSP 的 CapEx,包括 Amazon、CoreWeave、Google、Meta、Microsoft 和 Oracle。这些 CSP 将共同投资如此巨额的 CapEx。而且我必须告诉你们,现在的时机再好不过了。原因在于,Grace Blackwell NVL72 现已全面投产,全球各地的供应链都在生产它。因此,我们现在可以向所有客户交付这种新架构,确保他们的 CapEx 投资于能带来最佳 TCO 的工具——也就是计算机。
在这现象背后,有两件事正在同时发生。所以当你们看到这个数字时,它本身就足够非凡了。但在表象之下,发生的是:两个平台转变正在同时进行。第一个平台转变是从通用计算转向加速计算。记住,加速计算,正如我之前提到的,它能处理数据、处理图像、计算机图形,它能执行各种各样的计算。它能运行 SQL、运行 Spark,运行各种程序。你尽管提出需求,告诉我们需要运行什么,我敢肯定我们能为你提供一个出色的库。比如,你可能是一个数据中心,需要制造用于生产半导体的掩模。我们有很棒的库能帮你。
所以在底层,无论有没有 AI,世界都在从通用计算转向加速计算。事实上,许多 CSP 早在 AI 时代到来之前,就已经在提供相关服务了。记住,它们诞生于机器学习时代,那些经典的机器学习算法,比如 XGBoost,比如用于推荐系统的数据帧、协同过滤、内容过滤。所有这些技术都诞生于通用计算的旧时代。即便是那些算法,那些架构,现在通过加速计算也能获得更好的效果。因此,即使不考虑 AI,全球的 CSP 都会投资于计算加速。而 NVIDIA 的 GPU 是唯一不仅能完成所有这些任务,还能同时胜任 AI 的 GPU。ASIC也许能处理 AI,但它处理不了其他任何任务。NVIDIA 则可以通吃,这就解释了为什么全面信赖 NVIDIA 架构是如此稳妥的选择。我们现在已经进入了我们的良性循环,到达了我们的拐点。这真的非常了不起。
在座的有我许多的合作伙伴,你们都是我们供应链的一分子,我知道大家工作有多么努力。我想感谢大家。感谢你们的辛勤付出。非常感谢。我制作了一个视频,以致敬你们的工作。让我们一起来看一下。
(视频片段详细介绍了 NVIDIA Blackwell 复杂的全球制造过程)
黄仁勋:我们再次在美国进行制造了。这太不可思议了。Trump 总统当初对我提的第一个要求就是:把制造业带回来。把制造业带回来,因为这对于国家安全至关重要。把制造业带回来,因为我们需要就业岗位,我们需要这部分经济。九个月后,仅仅九个月后,我们就在亚利桑那州全面投产了 Blackwell。
极致的 Blackwell, GB200, NVL72, Grace Blackwell NVL72,这种极致的协同设计给我们带来了 10 倍的代际性能飞跃。这简直令人叹为观止。现在,真正了不起的是这个。这是我们制造的第一台 AI 超级计算机。在 2016 年,我把它交付给了旧金山的一家初创公司,这家公司就是后来的 OpenAI。这就是当时那台计算机。为了制造那台计算机,我们设计了一款芯片。一款新芯片。而现在,为了实现协同设计,看看我们必须完成的所有芯片。这就是代价。你不可能只靠一款芯片让计算机性能提升 10 倍。这绝无可能。要让计算机性能提升 10 倍,让我们能够持续实现指数级的性能增长,持续指数级地降低成本,唯一的方法就是极致的协同设计,并且同时在所有这些不同的芯片上下功夫。
12
下一代平台Rubin:100倍性能、无线缆、全液冷
我们现在在总部实验室已经有了 Rubin。这就是 Vera Rubin。女士们先生们,Rubin。这是我们的第三代 NVLink 72 机架规模计算机。第三代。GB200 是第一代。我们全球所有的合作伙伴,我知道你们有多么努力。那个过程极其艰难。实现它堪称难如登天。第二代,进展顺利多了。而到了这一代,请看,完全没有线缆。彻底的无线缆设计。现在它已经回到了实验室。这就是下一代 Rubin。在我们出货 GB200 (指 Blackwell 系列) 的同时,我们正在准备 Rubin 的投产,大约在明年这个时候,也许会更早一点。因此,每一年,我们都将推出最极致的协同设计系统,从而不断提升性能,不断降低 Token 的生成成本。
看看它。这真是一台精美绝伦的计算机。现在,它的算力是 100 petaflops。我知道这个数字可能很抽象。100 petaflops,但和我 9 年前交付给 OpenAI 的那台 DGX-1 相比,性能是它的 100 倍。就这台,性能是那台超级计算机的 100 倍。100 倍,100 台那样的机器,让我想想,100 台 DGX-1 大概相当于 25 个那样的机架,现在全被这一个单元替代了。Vera Rubin。这就是计算托盘,而这是,这是 Vera Rubin 超级芯片。这就是计算托盘,就在上方。安装起来极其简便,只需打开这些卡扣,把它推进去。连我都能轻松安装。
这就是 Vera Rubin 计算托盘。如果你决定想添加一个特殊的处理器,我们已经添加了另一个处理器。它被称为上下文处理器,因为我们现在需要给 AI 提供的上下文规模越来越大。我们希望它在回答问题前,先阅读大量的 PDF。我们希望它阅读大量的归档论文,观看大量的视频。在回答我的问题之前,先把这些都学会。所有这些上下文处理能力都可以被添加进来。所以你们看底部,有八个 ConnectX-9 新款超级 NIC。有八个 CPX。有 BlueField-4,这是新的数据处理器。两个 Vera CPU 和四个 Rubin 封装——也就是八个 Rubin GPU。所有这些都集成在这一个节点上,完全无线缆,100% 液冷。一切只为实现全球最快的 Token 生成速率。所以这就是一个机架的样子。
那么,这只是一个机架。一个千兆瓦级别的数据中心大约需要,16 个机架是 1000 个 (GPU),然后再乘以 500。所以大概是 500 16。因此,大约 8000 到 9000 个这样的机架,就能构成一个 1 千兆瓦的数据中心。这就是未来的 AI 工厂。
13
Omniverse DSX:在数字孪生中建造和运营AI工厂
如你们所知,NVIDIA 过去是从设计芯片起家的,接着我们开始设计系统,然后我们设计 AI 超级计算机。现在,我们正在设计完整的 AI 工厂。每一次我们拓展边界,整合并解决更大范畴的问题时,我们都能提出更好的解决方案。我们现在构建的是完整的 AI 工厂。这个 AI 工厂,就是我们为 Vera Rubin 构建的,我们创造了一项技术,使我们所有的合作伙伴都能够以数字化方式集成到这个工厂中。我来展示给你们看。
(视频片段展示了 NVIDIA Omniverse DSX,一个用于设计、建造和运营千兆瓦级 AI 工厂的蓝图,涉及 Jacobs, Siemens, Schneider Electric, Trane, Vertiv, PTC, Etap, Cadence, Fydra, Emerald AI, Bechtel 等合作伙伴,并演示了用于优化和运营的数字孪生能力。)
黄仁勋:完全地,完全地数字化。早在Vera Rubin 作为实体计算机问世之前,我们就已经将它作为数字孪生计算机来使用了。现在,早在这些 AI 工厂实体建成之前,我们就将使用它、设计它、规划它、优化它,并将其作为数字孪生来运营。因此,所有与我们合作的伙伴们,我为你们所有人的支持感到无比高兴。GO 在这里,GE Vernova 在这里,Schneider,我想 Olivier Blum 也在。Siemens,我们卓越的合作伙伴。Roland Busch,我想他正在观看。你好,Roland。总之,这些都是与我们共事的非常非常棒的合作伙伴。最初,我们有 CUDA,拥有了这些不同的软件合作伙伴生态系统。现在,我们有了 Omniverse DSX,我们正在构建 AI 工厂。再一次,我们拥有了这些卓越的合作伙伴生态系统与我们并肩作战。
14
开源模型:初创公司和科学研究的命脉
我们来谈谈模型,特别是开源模型。在过去几年中,发生了一些变化。第一,开源模型凭借推理能力,已经变得相当强大。它们变得强大,还因为它们具备了多模态能力,并且通过蒸馏技术变得极其高效。所有这些不同的能力,使得开源模型首次对开发者变得极其实用。它们现在是初创公司的命脉。是不同行业初创公司的命脉。因为很显然,正如我之前提到的,每个行业都有其独特的用例,独特的用例有其独特的数据,独特的数据能形成自己的飞轮。所有这些能力,那些领域专长,都需要被嵌入到模型中。开源使这成为可能。研究人员需要它,开发者需要开源,全世界的公司都需要开源。开源模型极其重要。
美国也必须在开源领域保持领先。我们拥有出色的专有模型。我们拥有出色的专有模型。但我们同样需要出色的开源模型。我们的国家依赖它,我们的初创公司依赖它。因此,NVIDIA 正致力于此。我们现在是最大的,最大的开源贡献者。我们在各大排行榜上有 23 个模型。我们涵盖了所有这些不同的领域,从语言模型到我即将谈论的物理 AI 模型,从机器人模型到生物模型。这些模型中的每一个背后都有庞大的团队支持,这也是我们为自己建造超级计算机的原因之一,就是为了让所有这些模型得以被创造出来。我们拥有排名第一的语音模型,排名第一的推理模型,排名第一的物理 AI 模型。下载量同样非常惊人。我们全心投入于此,因为科学需要它,研究人员需要它,初创公司需要它,企业也需要它。
15
加速企业AI:NVIDIA宣布与CrowdStrike和Palantir达成新合作
我们集成我们的库,我提到的所有 CUDA X 库,我提到的所有开源 AI 模型,我提到的所有模型,我们把它们集成到 AWS。我们与 Matt 的合作非常愉快。我们把它们集成到 Google Cloud。与 Thomas 的合作也非常愉快。这些云中的每一个都集成了 NVIDIA GPU、我们的计算能力、我们的库以及我们的模型。我们喜欢和 Microsoft Azure 的 Satya 合作。也喜欢和 Oracle 的 Clay 合作。这些云中的每一个都集成了 NVIDIA 的技术堆栈。因此,无论你走到哪里,无论你使用哪家云,体验都同样出色。
我们还将 NVIDIA 库集成到全球的 SaaS平台中,以便每一个 SaaS 最终都能演进为具备 AI Agent 能力的 SaaS。我非常欣赏 Bill McDermott 对 ServiceNow 的愿景。ServiceNow 是什么?它承载了全球 85% 的企业工作负载和工作流。SAP,承载了全球 80% 的商业活动。Christian Klein 和我正在合作,将 NVIDIA 的库,CUDA X、NeMo 以及 NeMoTron,我们所有的 AI 系统,全部集成到 SAP 中。我们与 Synopsys 的 Sassine 合作,加速全球的 CAE、CAD 、EDA工具,使它们运行更快、规模更大,并帮助他们创建 AI Agent。我期待有一天,能雇佣到 AI Agent 身份的 ASIC 设计师,来和我们的 ASIC 设计师一起工作,它们基本上就是 Synopsys 的“Cursor”。我们正与 Anirudh 合作。Anirudh 今天也在现场,我早些时候看到他了,他参与了开场环节。Cadence,他们正开展着不起的工作,加速他们的技术堆栈,创建 AI Agent,这样我们未来就能拥有 Cadence 的 AI ASIC 设计师和系统设计师与我们共事。
今天,我们还要宣布一项新的合作。AI 将极大提升生产力。AI 将变革几乎所有行业,但 AI 也将使网络安全挑战变得空前严峻,我指的是那些恶意的 AI。因此,我们需要一个极其强大的防御者。我无法想象比 CrowdStrike 更出色的防御者了。George,George 也在现场。我们正与CrowdStrike 合作,致力于让网络安全达到光速。我们将创建一个系统,它在云端拥有网络安全 AI Agent,同时在本地或边缘也部署有极其出色的 AI Agent。这样,无论威胁何时出现,你都能在瞬间将其检测出来。我们需要速度,我们需要快速的、具备AI Agent 能力的 AI,超级、超级智能的 AI。
我还有第二项宣布。这就是全球增长最快的企业服务公司,也可能是当今世界最重要的企业堆栈(enterprise stack) —— Palantir Ontology。Palantir 的朋友在现场吗?他们获取信息、数据和人类的判断力,并将其转化为商业洞察。我们与Palantir 合作,旨在加速 Palantir 的一切业务,使我们能够以空前庞大的规模和更快的速度处理数据。无论是过去的结构化数据,还是未来的人工记录数据、非结构化数据,我们都能为政府、国家安全以及全球企业高速处理这些数据,并从中发掘洞察。这就是未来的图景。Palantir 将集成 NVIDIA 的技术,使我们能够以光速和超凡的规模进行处理。NVIDIA 与 Palantir 携手共进。
16
物理AI:需要三台计算机协同工作
接下来谈谈物理 AI。物理 AI 需要三台计算机。就像训练一个大语言模型需要两台计算机——一台用于训练和评估,另一台用于推理一样。这就是你们看到的 GB200。而要实现物理 AI,你需要三台计算机。首先,你需要一台计算机来训练它。这就是 GB,Grace Blackwell NVL72。其次,你需要一台计算机来执行我之前用 Omniverse DSX 展示的所有模拟。它本质上是一个数字孪生,用于训练机器人如何高效工作,也让工厂实现数字孪生。这是第二台计算机,我们称之为 Omniverse 计算机。这台计算机必须在生成式 AI 方面表现极其出色,同时要擅长计算机图形学、传感器模拟、光线追踪和信号处理。这就是 Omniverse 计算机。一旦我们训练好模型,并在数字孪生中模拟了 AI——这个数字孪生既可以是工厂的数字孪生,也可以是大量机器人的数字孪生,接下来你就需要去操作那个机器人。这就是第三台计算机:机器人计算机。它可以被置入自动驾驶汽车,或者一半的模块被用于机器人。当然,对于那些在操作中非常敏捷、快速的机器人,可能需要两台这样的计算机。这就是 Thor,Jetson Thor 机器人计算机。这三台计算机都运行 CUDA,这使我们得以推动物理 AI 的发展——一种能够理解物理世界、物理定律、因果关系和持久性的 AI。
17
Drive Hyperion新发布
我们拥有非常优秀的合作伙伴,正与我们携手打造工厂中的物理 AI。我们自己也在利用这项技术建设我们位于德克萨斯州的工厂。一旦我们建成了机器人化工厂,工厂内会部署大量机器人。这些机器人同样需要物理 AI,它们应用物理 AI,并在数字孪生中运行。我们来看一个例子。
(视频片段展示了 Disney 的“Blue”机器人在 NVIDIA Omniverse 中使用 Newton 平台进行交互、突出其模拟和训练。)
黄仁勋:女士们先生们,Blue,Disney 的 Blue。他是不是非常可爱?他太可爱了,我们都想拥有一个。请记住,你们刚才所见的,不是动画,也不是电影,而是模拟。这场模拟运行在 Omniverse 中。Omniverse,就是数字孪生。因此,无论是工厂的数字孪生、仓库的数字孪生,还是手术室的数字孪生,Blue 都可以在这些环境中学习如何操控、导航以及与世界互动,所有这一切都是完全实时完成的。这将成为世界上最大的消费电子产品线。其中一些机器人现在的表现已经非常出色。这就是人形机器人的未来,当然,也是 Blue 的未来。
目前,人形机器人尚处于研发阶段。但与此同时,有另一种机器人显然正处于一个拐点,并且已经到来。那就是带轮子的机器人——Robotaxi。Robotaxi本质上就是一个AI 司机。今天,我们宣布推出NVIDIA Drive Hyperion。这是一项重要发布。我们创建了这套架构,让全球所有汽车公司都能制造支持Robotaxi的车辆,无论是商用车、乘用车,还是专用的Robotaxi。其传感器套件包含了环绕摄像头、雷达和激光雷达,使我们能够实现最高水平的全方位环绕式传感器感知,以及最高安全等级所必需的冗余。Drive Hyperion 平台现已应用于 Lucid、Mercedes-Benz (我的朋友 Ola Källenius 所在的公司)、Stellantis 的车型设计中,未来还会有更多车型加入。一旦有了一个基础的标准平台,那些才华横溢的自动驾驶系统开发者——比如 Wayve、Waabi、Aurora、Momenta、Nuro,还有 WeRide 等等众多公司——他们就可以将其自动驾驶系统部署在这个标准底盘上运行。这个标准底盘现在已经成为一个"带轮子的计算平台"。由于它是标准化的,并且配备了全面的传感器套件,所有开发者都可以在上面部署他们的 AI。我们来看一下。
(视频片段展示了 NVIDIA Drive Hyperion 平台在各种车辆中在旧金山自动驾驶。)
18
NVIDIA与Uber合作
黄仁勋:这是美丽的旧金山。如大家所见,Robotaxi的拐点即将到来。未来,每年将有万亿英里的行驶里程,每年制造1 亿辆汽车。全球约有 5000 万辆出租车,而海量的Robotaxi将作为补充。这将是一个非常庞大的市场。为了将它连接起来并部署到全球,我们今天宣布与Uber 建立合作伙伴关系。我们正与Dara (Dara K) 携手合作,将这些 NVIDIA Drive Hyperion 汽车接入一个全球网络。未来,你将能够呼叫到这样的汽车,这个生态系统将变得无比丰富,Hyperion 或Robotaxi将遍布世界。这将成为我们的一个全新计算平台,我坚信它会取得巨大的成功。
以上就是我们今天谈论的主要内容。我们探讨了许多议题。请记住,这一切的核心是两大平台转型。第一,是从通用计算转向加速计算。NVIDIA CUDA 及名为 CUDA X 的系列库,使我们能够服务于几乎所有行业,我们正处于这个拐点。正如良性循环所示,它正在加速增长。第二个拐点现已到来。第二个平台转型是 AI——从传统的手写代码转向人工智能。两大平台转型同时发生,这就是我们正经历如此迅猛增长的原因。我们谈到了量子计算。我们谈到了开放模型。我们谈到了企业应用,CrowdStrike 和 Palantir 正在加速其平台。我们谈到了机器人技术,这是一个全新的、巨大的,并可能成为最大的消费电子和工业制造领域之一。当然,我们还谈到了 6G。NVIDIA 为 6G 提供了新平台,我们称之为 Arc。我们为机器人汽车提供了新平台,我们称之为 Hyperion。我们甚至为工厂提供了新平台,包括两种类型:AI 工厂,我们称之为 DSX;以及应用 AI 的工厂,我们称之为 Mega。现在,我们也在美国进行制造。女士们先生们,感谢你们今天的参与,也感谢你们让我们有机会将 GTC 带到华盛顿。我们希望未来每年都能在这里举办。感谢你们所有人的贡献,让美国再次伟大。
| 文章来源:数字开物


【AI技术与应用交流群|仅限受邀加入】

AI算力领域TOP级从业者专属圈层
√ 与头部算力企业深度对话
√ 与AI上下游企业深度对话
√ 获取一手全球AI与算力产业信息
√ 获取AI热点及前沿产业独家信息
√ 随时了解全球AI领域高管最新观点及实录全文
√ 有机会参与AI主题产业交流活动
扫码验证身份(需备注姓名/公司/职务
不止有 DeepSeek,更有 AI产业的未来!
• END•
【专栏】精品再读
从陪伴到巴甫洛夫的狗、再到尼亚加拉瀑布,一场贯穿AI与算力全景生态的“数字开物·奇点π对”亮相2025服贸会!
3万字完整实录 | Andrej Karpathy:LLM仍是“孩子”、RL非常糟、AI是“幽灵”?
上下文工程才是AI应用的护城河 | Manus首席科学家季逸超最新万字对话实录
企业部署AI Agent的两大挑战 | 谷歌云首席技术官万字对话实录
1483

被折叠的 条评论
为什么被折叠?



