机器学习_10、集成学习-Bagging(自举汇聚法)

Bagging是一种通过训练多个独立模型并汇总其预测结果的集成学习方法,尤其适用于减少决策树的过拟合。文章介绍了Bagging的工作原理,优点以及在随机森林中的应用,还提供了一个使用BaggingClassifier的实际例子。
摘要由CSDN通过智能技术生成

Bagging(自举汇聚法)

Bagging(Bootstrap Aggregating,自举汇聚法)是一种集成学习方法,由Leo Breiman于1996年提出。它旨在通过结合多个模型来提高单个预测模型的稳定性和准确性。Bagging方法特别适用于减少高方差模型(如决策树)的过拟合问题,从而提高模型的泛化能力。

工作原理

Bagging的核心思想是通过并行地训练多个独立的预测模型,并将它们的预测结果进行汇总(对于分类任务通常采用投票机制,对于回归任务则采用平均),以此来提高整体模型的预测性能。具体步骤如下:

  1. 自助采样(Bootstrap sampling):从原始训练数据集中使用有放回的抽样方法随机选取N个样本,形成一个新的训练集。这个过程重复K次,生成K个不同的训练集。这些训练集之间可能有重叠的样本。

  2. 独立训练:对每个生成的训练集,独立地训练一个基预测模型。这些基模型可以是任何类型的模型,但在实践中常用决策树。每个模型只看到数据的一部分子集,这有助于模型学习到数据的不同方面。

  3. 汇总预测

    • 对于分类问题,最终的预测结果通常是通过投票机制得到的,即选择出现次数最多的类别标签作为最终预测。
    • 对于回归问题,最终的预测结果是通过计算所有单个模型预测值的平均值得到的。

优点

  • 减少方差:Bagging通过构建多个模型并汇总它们的预测结果,可以有效减少模型的方差,降低过拟合风险。
  • 提高鲁棒性:即使基模型的性能不是很好,通过Bagging也能提高整体模型的稳定性和准确性。
  • 易于实现并行化:由于各个基模型的训练是相互独立的,因此Bagging方法很容易进行并行化处理,提高计算效率。
  • 灵活性:Bagging方法可以与各种类型的预测模型结合使用,增加了方法的通用性。

应用场景

Bagging方法广泛应用于各种机器学习任务中,尤其是那些模型容易受到过拟合影响的场景。随机森林(Random Forest)就是一种基于决策树和Bagging原理的集成学习算法,它在多个领域内都表现出了优异的性能,如金融风险评估、医学诊断、图像识别等。此外,Bagging技术也适用于提升那些本身就表现不错但希望进一步提高准确度的模型性能。

#coding=utf-8
#BaggingClassifier.py
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import BaggingClassifier

# 加载葡萄酒数据集
wine = load_wine()
X, y = wine.data, wine.target

# 划分训练集与测试集
X_train, X_test, y_train, y_test = \
    train_test_split(X, y, stratify=y, random_state=0)

# 创建基本分类模型对象
gnb_clf = GaussianNB()

# 创建集成学习器
bc = BaggingClassifier(gnb_clf, n_estimators=20,
                       max_samples=0.5, bootstrap=True,
                       random_state=0)
# 训练模型
bc.fit(X_train, y_train)
print("训练集准确率:",bc.score(X_train,y_train),sep="")
print("测试集准确率:",bc.score(X_test,y_test),sep="")
print("测试集前三个样本的预测标签:",bc.predict(X_test[:3]))
print("测试集前三个样本的真实标签:",y_test[:3])
print("测试集前三个样本的标签预测概率:\n",
      bc.predict_proba(X_test[:3]),sep="")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知源书院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值