teleport
白井黑子空间移动专属传送服务!
好了我们来看今天的题。
我当年也参加了这场比赛,但是,当时的我是作为一个蒟蒻去参加的,所以这一题……连部分分都没做。
这道题其实难度适中。
看到这个猪的数量,也就知道要用状压了。
而且我们可以发现,当前状态可以由被打掉的猪的集合唯一确定。
因为我们已经打掉哪些猪,对我们未来再打猪是没有影响的。
有人可能会问:如果未来要打的猪有的在前面的抛物线上呢?
这一点并不是问题,当你看到我的状态转移方程就知道了。
我们先进行预处理,我们处理出我们可能得到的抛物线。
我们可以枚举其中的两只猪,计算得到一条抛物线,然后再判断其他的猪在不在这一条抛物线上。
最后保存这条抛物线能打的猪的集合。
计算这一块,要注意的只有一点,就是精度的问题,有时候3.14会被电脑处理成3.1399999之类的。
所以我们要考虑到一定的误差,设置一个误差值,计算结果只要在误差之内,视为相等。
状态转移非常简单:
f[S|para[i]]=min(f[S|para[i]],f[S]+1)
这里para[]是抛物线。
这样我们就做完了。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const double err=1e-6;
struct pig{
double x,y;
};
int T;
int n,m;
pig p[20];
int f[263000];
int para[200];
int cnt;
double geta(pig a,pig b){
return (b.x*a.y-a.x*b.y)/(b.x*a.x*(a.x-b.x));
}
double getb(double a,pig b){
return (b.y-a*b.x*b.x)/b.x;
}
bool calc(double a,double b,pig cur){
double res=a*cur.x*cur.x+b*cur.x-cur.y;
return res<=err&&res>=-err;
}
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
memset(f,0x3f,sizeof(f));
for(int i=0;i<n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
}
cnt=0;
f[0]=0;
for(int i=0;i<n;i++){
int S=1<<i;
f[S]=1;
para[cnt++]=S;
for(int j=i+1;j<n;j++){
S=1<<i;
if(p[i].x!=p[j].x){
double a=geta(p[i],p[j]);
if(a<0){
S+=1<<j;
f[S]=1;
double b=getb(a,p[j]);
for(int k=j+1;k<n;k++){
if(calc(a,b,p[k])){
S+=1<<k;
f[S]=1;
}
}
para[cnt++]=S;
}
}
}
}
for(int S=0;S<(1<<n);S++){
for(int i=0;i<cnt;i++){
f[S|para[i]]=min(f[S|para[i]],f[S]+1);
}
}
printf("%d\n",f[(1<<n)-1]);
}
return 0;
}