bzoj1822: [JSOI2010]Frozen Nova 冷冻波

版权声明:本文为一名蒟蒻的原创文章,大神转载的话顺便说个出处呗。 https://blog.csdn.net/cgh_Andy/article/details/51909148

题意请自己去看。

这道题如果知道哪个巫妖可以杀哪个小精灵,那么很明显我们可以弄出一个网络流构图,巫妖连源点,小精灵连汇点,可以杀的就连流量为1的边。在这个构图下,我们只需要二分答案,也就是需要的时间,然后源点和巫妖连流量为算出的攻击次数就好了。

那么,怎么判断能不能杀?问题就是判断线段与圆是否有交点.判断方法就是求线段到圆心的距离,如果这个距离小于半径那么线段和圆就有交点了啊(我平面几何不好。。弄了好久T_T)

Tips:

1.貌似数据没有限制,相切是影响或是不影响都可以

2.记得绝对值,woc有一次就是没加绝对值

3.记得 是点到线段的距离,考虑好细节啊

代码略丑

#include
#include
#include
#include
#include
#include
#include
#define Max 0x7fffffff
#define me(a,x) memset(a,x,sizeof a)
using namespace std;
typedef long long LL;
struct node
{
    int x,y,next,c;
}a[101000]; int len,first[410];
void ins(int x,int y,int c)
{
    a[++len].x=x,a[len].y=y,a[len].c=c;
    a[len].next=first[x],first[x]=len;
    a[++len].x=y,a[len].y=x,a[len].c=0;
    a[len].next=first[y],first[y]=len;
}
queueq;
int h[410],t;
bool spfa()
{
    for(int i=0;i<=t;i++)h[i]=0;
    h[0]=1; q.push(0);
    while(!q.empty())
    {
        int x=q.front();
        q.pop();
        for(int k=first[x];k;k=a[k].next)
        {
            int y=a[k].y;
            if(!h[y] && a[k].c)
                h[y]=h[x]+1 , q.push(y);
        }
    }
    return h[t]>0;
}
int dfs(int x,int f)
{
    if(x==t)return f;
    int de=0;
    for(int k=first[x];k;k=a[k].next)
    {
        int y=a[k].y;
        if(a[k].c && h[y]==h[x]+1)
        {
            int mf=dfs(y,min(a[k].c,f-de));
            a[k].c-=mf,a[k^1].c+=mf,de+=mf;
            if(de==f)return f;
        }
    }
    if(!de)h[x]=0;
    return de;
}
struct point
{
    int x,y;
    friend point operator - (point x,point y)
    {
      point k;
      k.x=x.x-y.x,k.y=x.y-y.y;
      return k;
    }
    friend bool operator ==(point x,point y)
    {
        return (x.x==y.x)&&(x.y==y.y)?1:0;
    }
}e[210],f[210],g[210];
int n,m,p,r1[210],r2[210],t1[210];
bool o[210][210];
double dis(point x,point y){return sqrt((x.x-y.x)*(x.x-y.x)+(x.y-y.y)*(x.y-y.y));}
int dot(point x,point y){return x.x*y.x+x.y*y.y;}
int cj(point p1,point p2,point p0)
{
    int x1=p1.x-p0.x,x2=p2.x-p0.x;
    int y1=p1.y-p0.y,y2=p2.y-p0.y;
    return x1*y2-x2*y1;
}
double woc(point p1,point p2,point p0)
{
    if(p1==p2)return dis(p1,p0);
    if(dot(p2-p1,p0-p1)<0)return dis(p1,p0);
    if(dot(p1-p2,p0-p2)<0)return dis(p2,p0);
    return fabs((double)cj(p1,p2,p0)/dis(p1,p2));
}
bool kill(int x,int y)
{
    if(dis(e[x],f[y])>r1[x])return 0;
    for(int i=1;i<=p;i++)
        if(woc(e[x],f[y],g[i])>1;
        if(check(mid))r=mid-1,ans=mid;
        else l=mid+1;
    }
    printf("%d\n",ans);
    return 0;
}

 


展开阅读全文

没有更多推荐了,返回首页