题目大意:在平面中有一些巫妖和一些小精灵,还有一些树会阻挡巫妖的视线。每一个巫妖都有一个攻击半径,如果一个小精灵在巫妖的攻击半径内,两点之间的连线没有树木阻挡,那么巫妖就可以秒杀小精灵。每个巫妖都有技能的CD。问最快多长时间可以使小精灵全灭。
思路:看出范围知算法系列。很明显的二分+最大流。二分最短时间,在这个时间内,每个巫妖可以发招time / CD + 1次。那么每次建图就从S到每个巫妖连能够输出的次数流量的边。每个巫妖向能攻击到的小精灵连边,之后每个小精灵向T连边。每次判断max_flow是否等于小精灵数。
CODE:
#include <queue>
#include <cmath>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 510
#define MAXE 1000000
#define INF 0x3f3f3f3f
#define S 0
#define T (MAX - 1)
using namespace std;
#define min(a,b) ((a) < (b) ? (a):(b))
struct Point{
int x,y;
}pos[MAX];
struct Complex{
Point p;
int r;
void Read() {
scanf("%d%d%d",&p.x,&p.y,&r);
}
}src[MAX],tree[MAX];
vector<int> can[MAX];
int _time[MAX];
int cnt,_cnt,trees;
inline double Calc(const Point &p1,const Point &p2)
{
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
inline double GetArea(const Point &p1,const Point &p2,const Point &p3)
{
double l1 = Calc(p1,p2),l2 = Calc(p2,p3),l3 = Calc(p3,p1);
double p = (l1 + l2 + l3) / 2;
return sqrt(p * (p - l1) * (p - l2) * (p - l3));
}
inline bool InRange(const Complex &tree,const Point &p1,const Point &p2)
{
double area = GetArea(p1,p2,tree.p) * 2;
double dis = area / Calc(p1,p2);
return dis <= tree.r;
}
int head[MAX],total;
int next[MAXE],aim[MAXE],flow[MAXE];
inline void Add(int x,int y,int f)
{
next[++total] = head[x];
aim[total] = y;
flow[total] = f;
head[x] = total;
}
inline void Insert(int x,int y,int f)
{
Add(x,y,f);
Add(y,x,0);
}
inline void BuildGraph(int ans)
{
memset(head,0,sizeof(head));
total = 1;
for(int i = 1; i <= cnt; ++i) {
Insert(S,i,ans / _time[i] + 1);
for(vector<int>::iterator it = can[i].begin(); it != can[i].end(); ++it)
Insert(i,cnt + *it,1);
}
for(int i = 1; i <= _cnt; ++i)
Insert(cnt + i,T,1);
}
int deep[MAX];
inline bool BFS()
{
static queue<int> q;
while(!q.empty()) q.pop();
memset(deep,0,sizeof(deep));
deep[S] = 1;
q.push(S);
while(!q.empty()) {
int x = q.front(); q.pop();
for(int i = head[x]; i; i = next[i])
if(!deep[aim[i]] && flow[i]) {
deep[aim[i]] = deep[x] + 1;
q.push(aim[i]);
if(aim[i] == T) return true;
}
}
return false;
}
int Dinic(int x,int f)
{
if(x == T) return f;
int temp = f;
for(int i = head[x]; i; i = next[i])
if(temp && deep[aim[i]] == deep[x] + 1 && flow[i]) {
int away = Dinic(aim[i],min(flow[i],temp));
if(!away) deep[aim[i]] = 0;
flow[i] -= away;
flow[i^1] += away;
temp -= away;
}
return f - temp;
}
int main()
{
cin >> cnt >> _cnt >> trees;
for(int i = 1; i <= cnt; ++i) {
src[i].Read();
scanf("%d",&_time[i]);
}
for(int i = 1; i <= _cnt; ++i)
scanf("%d%d",&pos[i].x,&pos[i].y);
for(int i = 1; i <= trees; ++i)
tree[i].Read();
for(int i = 1; i <= cnt; ++i)
for(int j = 1; j <= _cnt; ++j)
if(Calc(src[i].p,pos[j]) <= src[i].r) {
bool flag = true;
for(int k = 1; k <= trees; ++k)
if(InRange(tree[k],src[i].p,pos[j]))
flag = false;
if(flag)
can[i].push_back(j);
}
int l = 0,r = 10000000,ans = -1;
while(l <= r) {
int mid = (l + r) >> 1;
BuildGraph(mid);
int max_flow = 0;
while(BFS())
max_flow += Dinic(S,INF);
if(max_flow == _cnt)
r = mid - 1,ans = mid;
else l = mid + 1;
}
cout << ans << endl;
return 0;
}