这道题首先看到每个跑道的两个端点都是交点所以其实最多只有100个点!可以离散化一下
当然很容易想到分层图 可是这样还是会超时
所以有了新姿势 倍增Floyd :令f[p][i][j]表示走2^p步从i到达j的最短路 有f[p][i][j]=min{f[p-1][i][k]+f[p-1][k][j]}
将n进行二进制拆分 一个数组用于倍增 一个用于记录就好 当然中间还有一个过渡的(不懂就看代码 其实思想跟矩乘很像的)
当然也可以定义一个新的矩乘 不过要证明是可行的 可以去看一下 俞华程《矩阵乘法在信息学中的应用》
#include<cmath>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#define me(a,x) memset(a,x,sizeof a)
#define cp(a,x) memcpy(a,x,sizeof a)
using namespace std;
typedef long long LL;
const int N=110,inf=1e9;
inline int read()
{
LL x=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
int f[N][N],g[N][N],h[N][N],p[1010],id;
int main()
{
int i,j,k,x,y,c,n,m,st,ed;
n=read(),m=read(),st=read(),ed=read();
id=0; me(f,63); me(h,63);
for(i=1;i<=m;i++)
{
c=read(),x=read(),y=read();
if(!p[x])p[x]=++id; if(!p[y])p[y]=++id;
f[p[x]][p[y]]=f[p[y]][p[x]]=c;
}
for(i=1;i<=id;i++)h[i][i]=0;
while(n)
{
if(n&1)
{
me(g,63);
for(k=1;k<=id;k++)for(i=1;i<=id;i++)for(j=1;j<=id;j++)g[i][j]=min(g[i][j],f[i][k]+h[k][j]);
cp(h,g);
}
me(g,63);
for(k=1;k<=id;k++)for(i=1;i<=id;i++)for(j=1;j<=id;j++)g[i][j]=min(g[i][j],f[i][k]+f[k][j]);
cp(f,g); n=n>>1;
}
printf("%d\n",h[p[st]][p[ed]]);
return 0;
}