BZOJ 1727 [Usaco2006 Open]The Milk Queue 挤奶队列

强大的贪心

看我来一波语无伦次 如果不懂再留言吧 我怕讲不清楚

定义f[i]为第i个的完成时间 注意i是按照一个随意的顺序排的(你理解为原序也没问题) s[i]=a1+a2+...+ai

f[1]=a1+b1 f[i]=max(f[i-1],s[i])+b[i]

将f数组变成a b来表示 可以发现

f[2]=max(a1+b1+b2,a1+a2+b2)   f[3]=max{a1+b1+b2+b3,a1+a2+b2+b3,a1+a2+a3+b3}

剩下的自己列吧

发现f[x]=max(a1+a2+...ai+bi+b[i+1]...bx) 然后就考虑 i位置的两个数交换 其它相邻位置交换是无影响的

然后式子就变成  max(a[i]+b[i]+b[i+1],a[i]+a[i+1]+b[i+1])>max(a[i+1]+b[i+1]+b[i],a[i+1]+a[i]+b[i])(交换更好)

弄一下 就跟网上面的其它一样了(我认为不能直接对比1、2,要先这样推一下吧)

排序时就这样对比 min(a[i],b[i+1])<min(a[i+1],b[i]) 这是化简之后的(自己推一下吧 到这里就简单了)

排序之后模拟过程记录答案就好

Code

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long LL;
const int inf=1<<29,N=25010;
inline int read()
{
    char ch=getchar(); int x=0,f=1;
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
    return x*f;
}
struct node{int x,y;}a[N];
int Cmp(node x1,node x2){return min(x1.x,x2.y)<min(x1.y,x2.x);}
int main()
{
    int i,j,n=read();
    for(i=1;i<=n;i++)a[i].x=read(),a[i].y=read();
    sort(a+1,a+1+n,Cmp);
    int x=a[1].x,s=a[1].x+a[1].y;
    for(i=2;i<=n;i++)
    {
        x+=a[i].x;
        s=max(s,x)+a[i].y;
    }
    printf("%d\n",s);
    return 0;
}


题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值