题目描述
upd on 2020.6.10 :更新了时限。
作为一个生活散漫的人,小 Z 每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小 Z 再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小 Z 把这 N 只袜子从 1 到 N 编号,然后从编号 L 到 R 的袜子中随机选出两只来穿。尽管小 Z 并不在意两只袜子是不是完整的一双,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小 Z,他有多大的概率抽到两只颜色相同的袜子。当然,小 Z 希望这个概率尽量高,所以他可能会询问多个 (L,R) 以方便自己选择。
然而数据中有L=R 的情况,请特判这种情况,输出0/1
。
输入格式
输入文件第一行包含两个正整数 N 和 M。N 为袜子的数量,M 为小 Z 所提的询问的数量。接下来一行包含 N 个正整数 Ci,其中 Ci 表示第 i 只袜子的颜色,相同的颜色用相同的数字表示。再接下来 M 行,每行两个正整数 L,R 表示一个询问。
输出格式
包含 M 行,对于每个询问在一行中输出分数 A/B 表示从该询问的区间[L,R] 中随机抽出两只袜子颜色相同的概率。若该概率为 0 则输出 0/1
,否则输出的 A/B 必须为最简分数。(详见样例)
输入输出样例
输入 #1复制
6 4 1 2 3 3 3 2 2 6 1 3 3 5 1 6
输出 #1复制
2/5 0/1 1/1 4/15
说明/提示
30%的数据中,N,M≤5000;
60%的数据中,N,M≤25000;
100%的数据中,N,M≤50000,1≤L<R≤N,Ci≤N。
分析
题目中没有繁琐的修改操作,数据范围较小,适于使用莫队算法
考虑如何计算概率:显然,对于区间内某一种颜色的袜子来说,选到两只这种袜子的概率是
(其中cnt为这类袜子个数)
那么,抽到相同袜子概率为所有类型袜子概率相加
那么,如何用莫队实现呢,假设向右移动一位,则这只被舍弃的袜子使分子减少了 (其中cnt为减前的个数)
那么容易得到如下代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll n,q,a[50010],blog[50010],cnt[50010];
struct N{
ll l,r,ans1,ans2,id;
}Q[50010];
ll Val;
inline bool cmp(N x,N y){
return (blog[x.l]^blog[y.l])?blog[x.l]<blog[y.l]:((blog[x.l]&1)?x.r<y.r:x.r>y.r);
}
inline void del(ll p){
Val-=2*(--cnt[a[p]]);
}
inline void add(ll p){
Val+=2*(cnt[a[p]]++);
}
inline ll gcd(ll x,ll y){
if(!y) return x;
return gcd(y,x%y);
}
int main()
{
cin>>n>>q;
ll m=pow(n,0.6666);
for(ll i=1;i<=n;i++)
{
cin>>a[i];
blog[i]=(i-1)/m+1;
}
for(ll i=1;i<=q;i++)
{
cin>>Q[i].l>>Q[i].r;
Q[i].id=i;
}
sort(Q+1,Q+q+1,cmp);
ll l=1,r=0;
for(ll i=1;i<=q;i++)
{
ll ql=Q[i].l,qr=Q[i].r;
while(l<ql) del(l++);
while(l>ql) add(--l);
while(r<qr) add(++r);
while(r>qr) del(r--);
ll p=Q[i].id;
Q[p].ans1=Val,Q[p].ans2=(qr-ql+1)*(qr-ql);
}
for(ll i=1;i<=q;i++)
{
ll tmp=gcd(Q[i].ans1,Q[i].ans2);
if(!Q[i].ans1)
{
cout<<"0/1\n";
continue;
}
cout<<Q[i].ans1/tmp<<'/'<<Q[i].ans2/tmp<<endl;
}
return 0;
}
在洛谷,
享受 Coding 的欢乐
关于洛谷 | 帮助中心 | 用户协议 | 联系我们
小黑屋 | 陶片放逐 | 社区规则 | 招贤纳才
Developed by the Luogu Dev Team
2013-2024 , © 洛谷
增值电信业务经营许可证 沪B2-20200477