QM basics

Chenglab b站视频学习笔记

Wave Function

波函数

量子力学系统是被系统中所有粒子的坐标来描述的
波函数里面每个粒子有三个坐标
ψ ( x 1 , y 1 , z 1 , x 2 , y 2 , z 2 . . . ) = ψ ( r 1 , r 2 , . . . ) \psi(x_1, y_1, z_1, x_2, y_2, z_2...) = \psi(\bold r_1,\bold r_2, ...) ψ(x1,y1,z1,x2,y2,z2...)=ψ(r1,r2,...)
波函数能包含所有实验要测量的所有信息,即包含体系的所有性质

归一化的波函数的平方是一个合法的分布。一维上,
∫ ∣ ψ ( x ) ∣ 2 d x = ∫ ψ ∗ ψ d = 1 \int |\psi(x)|^2dx = \int \psi ^* \psi d = 1 ψ(x)2dx=ψψd=1

Operators

算符

任何可观测的物理量都可以用算符来描述

An operator is a mathematical intruction that converts one function into another. For example, the differential operator d/dx changes the function sin(x) into function cos(x).

算符:把一个数学函数变成另一个数学函数的变换(比如说微分算符)


举一些栗子,量子力学中常用的算符,长这样子:

位置算符 x ⇔ x ^ x \Leftrightarrow \hat{x} xx^
x ^ ψ ( x ) = x ψ ( x ) \hat x \psi (x) = x \psi (x) x^ψ(x)=xψ(x)

势能算符 Potential V ( x ) ⇔ V ^ V(x)\Leftrightarrow \hat{V} V(x)V^

V ^ ψ ( x ) = V ( x ) ψ ( x ) \hat V \psi (x) = V(x) \psi (x) V^ψ(x)=V(x)ψ(x)

动量算符 momentum p x ⇔ p ^ x p_x \Leftrightarrow \hat p_x pxp^x

p ^ x ψ ( x ) = − i h ∂ ∂ x ψ ( x ) \hat {p} _x \psi(x) = -ih \frac{\partial}{\partial x} \psi (x) p^xψ(x)=ihxψ(x)


在量子力学中,如果我们想计算一个物理量Q的期望值,要这么算:

⟨ Q ⟩ = ∫ ψ ∗ Q ^ ψ d τ ∫ ψ ∗ ψ d τ \left \langle Q \right \rangle = \frac{\int \psi ^* \hat Q \psi d \tau}{\int \psi ^* \psi d\tau} Q=ψψdτψQ^ψdτ
若波函数归一化

⟨ Q ⟩ = ∫ ψ ∗ Q ^ ψ d τ \left \langle Q \right \rangle = {\int \psi ^* \hat Q \psi d \tau} Q=ψQ^ψdτ


如果我们有一个满足下列等式的算符,(这里q只是一个实数)
Q ^ ψ = q ψ \hat Q \psi = q \psi Q^ψ=qψ
这里 ψ \psi ψ叫本征波函数(Eigenfunction),q叫本征值(Eigen)
那么这个式子就叫本征方程(eigenvalue equation)
⟨ Q ⟩ = ∫ ψ ∗ Q ^ ψ d τ = ∫ ψ ∗ q ψ d τ = q ∫ ψ ∗ ψ d τ = q \left \langle Q \right \rangle = {\int \psi ^* \hat Q \psi d \tau} \\ = {\int \psi ^* q \psi d \tau} \\ = q {\int \psi ^* \psi d \tau} = q Q=ψQ^ψdτ=ψqψdτ=qψψdτ=q
(其实这里并不需要 ψ \psi ψ是归一化的,分子分母可以消去 ∫ ψ ∗ ψ d τ \int \psi ^* \psi d \tau ψψdτ


这是一个independent的薛定谔方程,(后面会说independent的含义)

H ψ = E ψ H \psi = E \psi Hψ=Eψ

这里H是哈密尔顿算符(Hamiltonian),它长得很特别,因为它没有帽子,只是斜体H。E是体系总能量,是一个实数。
如果我们能解出这个方程,就能得到体系的波函数和能量。

H = T ^ + V ^ T ^ = p 2 2 m = − h 2 2 m d 2 d x 2 − − − − − − − − − 对 整 个 空 间 T ^ = − h 2 2 m ▽ 2 − − − − − − − − − V ^ ( r ) = q 4 π ϵ 0 1 r H = \hat T + \hat V \\ \hat{T} = \frac{p^2}{2m} = -\frac{h^2}{2m} \frac{d^2}{dx^2} \\ ---------\\ 对整个空间 \hat{T} = -\frac{h^2}{2m} \bigtriangledown ^2 \\ ---------\\ \hat{V}(r) = \frac{q}{4\pi \epsilon_0} \frac{1}{r} H=T^+V^T^=2mp2=2mh2dx2d2T^=2mh22V^(r)=4πϵ0qr1


Born-Oppenheimer approximation

伯恩海默近似

考虑所有电子(小r向量)和所有原子核(大R向量)

ψ ( r 1 , r 2 , r 3 , . . . r N e l e c , R 1 , R 2 , R 3 , . . . R N n u c ) \psi (\bold{r_1}, \bold{r_2}, \bold{r_3}, ... \bold{r_{N_{elec}}}, \bold{R_1}, \bold{R_2}, \bold{R_3}, ... \bold{R_{N_{nuc}}}) ψ(r1,r2,r3,...rNelec,R1,R2,R3,...RNnuc)
由于原子核跑得比电子慢的多,那么考虑电子波函数的时候,我们可以认为原子核不动

ψ e l e c ( r 1 , r 2 , r 3 , . . . r N e l e c ) \psi _{elec} (\bold{r_1}, \bold{r_2}, \bold{r_3}, ... \bold{r_{N_{elec}}}) ψelec(r1,r2,r3,...rNelec)
解电子薛定谔方程

H e l e c ψ e l e c ( r ; R ) = E e l e c ( R ) ψ ( r , R ) H_{elec} \psi _{elec} (\bold r;\bold R) = E_{elec} ( \bold{R} ) \psi (\bold{r}, \bold{R} ) Helecψelec(r;R)=Eelec(R)ψ(r,R)


Hartree Theory

如果我们忽略第三项,那么对于每个电子都可以获得一个本征值,那么波函数就是每个电子波函数的乘积,就是HP(Hartree product),此时我们叫它independent/noninteracting/uncorrelated,指每个电子的能量都被单独考虑再做加和。
H S P ψ H P = ( ϵ 1 + ϵ 2 + . . . + ϵ N ) ψ H P H^{SP} \psi ^{HP} = (\epsilon_1 + \epsilon_2 + ... + \epsilon_N) \psi^{HP} HSPψHP=(ϵ1+ϵ2+...+ϵN)ψHP
然而,如果我们把电子自旋也考虑进来,HP就不满足Pauling不相容原理了,因为HP当中交换两项是相同的。(这里跳过了视频中自旋的表示部分)

注:Pauling不相容原理:
ψ ( r 1 , . . . , r i , . . . , r j , . . . , r N ) = − ψ ( r 1 , . . . , r j , . . . , r i , . . . , r N ) \psi (\bold{r_1}, ..., \bold{r_i}, ..., \bold{r_j}, ..., \bold{r_N}) = - \psi (\bold{r_1}, ..., \bold{r_j}, ..., \bold{r_i}, ..., \bold{r_N}) \\ ψ(r1,...,ri,...,rj,...,rN)=ψ(r1,...,rj,...,ri,...,rN)

但是如果用HP

ψ ( r 1 , . . . , r i , . . . , r j , . . . , r N ) = ψ ( r 1 , . . . , r j , . . . , r i , . . . , r N ) \psi (\bold{r_1}, ..., \bold{r_i}, ..., \bold{r_j}, ..., \bold{r_N}) = \psi (\bold{r_1}, ..., \bold{r_j}, ..., \bold{r_i}, ..., \bold{r_N}) \\ ψ(r1,...,ri,...,rj,...,rN)=ψ(r1,...,rj,...,ri,...,rN)

显然HP不管用了,所以我们需要一种新的管用的数学形式——Slater行列式(Slater Determinant)。由行列式的性质,我们知道交换波函数中两项时结果变号。
ψ S D ( ψ ( r 1 ) , ψ ( r 2 ) , . . . , ψ ( r N ) ) = 1 N ! ∣ ψ ( r 1 ) ψ ( r 1 ) . . . ψ ( r 1 ) ψ ( r 2 ) ψ ( r 2 ) . . . ψ ( r 2 ) . . . . . . . . . . . . ψ ( r N ) ψ ( r N ) . . . ψ ( r N ) ∣ \psi ^{SD}(\psi(\bold{r_1}), \psi(\bold{r_2}), ..., \psi(\bold{r_N})) = \frac{1}{\sqrt{N!}} \left| \begin{array}{cccc} \psi(\bold{r_1}) \psi(\bold{r_1}) ... \psi(\bold{r_1}) \\ \psi(\bold{r_2}) \psi(\bold{r_2}) ... \psi(\bold{r_2}) \\ ... ... ... ...\\ \psi(\bold{r_N}) \psi(\bold{r_N}) ... \psi(\bold{r_N}) \end{array} \right| ψSD(ψ(r1),ψ(r2),...,ψ(rN))=N! 1ψ(r1)ψ(r1)...ψ(r1)ψ(r2)ψ(r2)...ψ(r2)............ψ(rN)ψ(rN)...ψ(rN)

而Hartree-Fock theory就是把 ψ S D \psi^{SD} ψSD作为波函数代入薛定谔方程,相当于把Hartree Theory中的 ψ H P \psi^{HP} ψHP直接换成 ψ S D \psi^{SD} ψSD,推得

E H F = ∫ ψ S D ∗ H ψ S D d τ = E H P + J − K E_{HF} = \int \psi^{SD*} H \psi^{SD} d\tau \\ = E^{HP} + J - K EHF=ψSDHψSDdτ=EHP+JK

(此处视频里忽略了展开推导)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值