Kafka的消费者

7 篇文章 0 订阅
文章详细介绍了Kafka消费者如何消费消息,包括基本实现、自动提交与手动提交offset、poll消息过程、指定分区和时间点消费等关键概念,强调了自动提交可能的丢消息情况以及手动提交的同步和异步方式。
摘要由CSDN通过智能技术生成


1.消费者消费消息的基本实现

public class MyConsumer {
private final static String TOPIC_NAME = "my-replicated-topic";
private final static String CONSUMER_GROUP_NAME = "testGroup";

public static void main(String[] args) {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"10.31.167.10:9092,10.31.167.10:9093,10.31.167.10:9094");
// 消费分组名
props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
//创建一个消费者的客户端
KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(props);
// 消费者订阅主题列表
consumer.subscribe(Arrays.asList(TOPIC_NAME));

while (true) {
/*
* poll() API 是拉取消息的⻓轮询
*/
ConsumerRecords<String, String> records =consumer.poll(Duration.ofMillis( 1000 ));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("收到消息:partition = %d,offset = %d, key =%s, value = %s%n", record.partition(),record.offset(), record.key(), record.value());
            }
        }
    }
}

2.自动提交offset

设置自动提交参数 - 默认

// 是否自动提交offset,默认就是true
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
// 自动提交offset的间隔时间
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");

消费者poll到消息后默认情况下,会自动向broker的_consumer_offsets主题提交当前主题-分区消费的偏移量。

自动提交会丢消息: 因为如果消费者还没消费完poll下来的消息就自动提交了偏移量,那么此 时消费者挂了,于是下一个消费者会从已提交的offset的下一个位置开始消费消息。之前未被消费的消息就丢失掉了。

3.手动提交offset

设置手动提交参数

props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");

在消费完消息后进行手动提交

手动同步提交

if (records.count() > 0 ) {
// 手动同步提交offset,当前线程会阻塞直到offset提交成功
// 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了
consumer.commitSync();
}

手动异步提交

if (records.count() > 0 ) {
// 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑
consumer.commitAsync(new OffsetCommitCallback() {
@Override
public void onComplete(Map<TopicPartition, OffsetAndMetadata>offsets, Exception exception) {
          if (exception != null) {
              System.err.println("Commit failed for " + offsets);
              System.err.println("Commit failed exception: " +exception.getStackTrace());
          }
       }
  }
);
}

4.消费者poll消息的过程

消费者建立了与broker之间的⻓连接,开始poll消息。
默认一次poll 500条消息

props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500 );

可以根据消费速度的快慢来设置,因为如果两次poll的时间如果超出了30s的时间间隔,kafka会认为其消费能力过弱,将其踢出消费组。将分区分配给其他消费者。

可以通过这个值进行设置:

props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000 );

如果每隔1s内没有poll到任何消息,则继续去poll消息,循环往复,直到poll到消息。如果超出了1s,则此次⻓轮询结束。

ConsumerRecords<String, String> records =consumer.poll(Duration.ofMillis( 1000 ));

消费者发送心跳的时间间隔

props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000 );

kafka如果超过 10 秒没有收到消费者的心跳,则会把消费者踢出消费组,进行rebalance,把分区分配给其他消费者。

props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000 );

5.指定分区消费

consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0 )));

6.消息回溯消费

consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0 )));
consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME,0 )));

7.指定offset消费

consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0 )));
consumer.seek(new TopicPartition(TOPIC_NAME, 0 ), 10 );

8.从指定时间点消费

List<PartitionInfo> topicPartitions =consumer.partitionsFor(TOPIC_NAME);
//从 1 小时前开始消费
long fetchDataTime = new Date().getTime() - 1000 * 60 * 60 ;
Map<TopicPartition, Long> map = new HashMap<>();
for (PartitionInfo par : topicPartitions) {
    map.put(new TopicPartition(TOPIC_NAME, par.partition()),fetchDataTime);
}
Map<TopicPartition, OffsetAndTimestamp> parMap =consumer.offsetsForTimes(map);
for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry :parMap.entrySet()) {
    TopicPartition key = entry.getKey();
    OffsetAndTimestamp value = entry.getValue();
    if (key == null || value == null) continue;
    Long offset = value.offset();
    System.out.println("partition-" + key.partition() +"|offset-" + offset);
    System.out.println();
    //根据消费里的timestamp确定offset
    if (value != null) {
        consumer.assign(Arrays.asList(key));
        consumer.seek(key, offset);
    }
}

9.新消费组的消费偏移量

当消费主题的是一个新的消费组,或者指定offset的消费方式,offset不存在,那么应该如何消费?

  • latest(默认) :只消费自己启动之后发送到主题的消息
  • earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于consumer.seekToBeginning(每次都从头开始消费)
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chad__chang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值