文章目录
1.消费者消费消息的基本实现
public class MyConsumer {
private final static String TOPIC_NAME = "my-replicated-topic";
private final static String CONSUMER_GROUP_NAME = "testGroup";
public static void main(String[] args) {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"10.31.167.10:9092,10.31.167.10:9093,10.31.167.10:9094");
// 消费分组名
props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
//创建一个消费者的客户端
KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(props);
// 消费者订阅主题列表
consumer.subscribe(Arrays.asList(TOPIC_NAME));
while (true) {
/*
* poll() API 是拉取消息的⻓轮询
*/
ConsumerRecords<String, String> records =consumer.poll(Duration.ofMillis( 1000 ));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("收到消息:partition = %d,offset = %d, key =%s, value = %s%n", record.partition(),record.offset(), record.key(), record.value());
}
}
}
}
2.自动提交offset
设置自动提交参数 - 默认
// 是否自动提交offset,默认就是true
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
// 自动提交offset的间隔时间
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
消费者poll到消息后默认情况下,会自动向broker的_consumer_offsets主题提交当前主题-分区消费的偏移量。
自动提交会丢消息: 因为如果消费者还没消费完poll下来的消息就自动提交了偏移量,那么此 时消费者挂了,于是下一个消费者会从已提交的offset的下一个位置开始消费消息。之前未被消费的消息就丢失掉了。
3.手动提交offset
设置手动提交参数
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
在消费完消息后进行手动提交
手动同步提交
if (records.count() > 0 ) {
// 手动同步提交offset,当前线程会阻塞直到offset提交成功
// 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了
consumer.commitSync();
}
手动异步提交
if (records.count() > 0 ) {
// 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑
consumer.commitAsync(new OffsetCommitCallback() {
@Override
public void onComplete(Map<TopicPartition, OffsetAndMetadata>offsets, Exception exception) {
if (exception != null) {
System.err.println("Commit failed for " + offsets);
System.err.println("Commit failed exception: " +exception.getStackTrace());
}
}
}
);
}
4.消费者poll消息的过程
消费者建立了与broker之间的⻓连接,开始poll消息。
默认一次poll 500条消息
props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500 );
可以根据消费速度的快慢来设置,因为如果两次poll的时间如果超出了30s的时间间隔,kafka会认为其消费能力过弱,将其踢出消费组。将分区分配给其他消费者。
可以通过这个值进行设置:
props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000 );
如果每隔1s内没有poll到任何消息,则继续去poll消息,循环往复,直到poll到消息。如果超出了1s,则此次⻓轮询结束。
ConsumerRecords<String, String> records =consumer.poll(Duration.ofMillis( 1000 ));
消费者发送心跳的时间间隔
props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000 );
kafka如果超过 10 秒没有收到消费者的心跳,则会把消费者踢出消费组,进行rebalance,把分区分配给其他消费者。
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000 );
5.指定分区消费
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0 )));
6.消息回溯消费
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0 )));
consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME,0 )));
7.指定offset消费
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0 )));
consumer.seek(new TopicPartition(TOPIC_NAME, 0 ), 10 );
8.从指定时间点消费
List<PartitionInfo> topicPartitions =consumer.partitionsFor(TOPIC_NAME);
//从 1 小时前开始消费
long fetchDataTime = new Date().getTime() - 1000 * 60 * 60 ;
Map<TopicPartition, Long> map = new HashMap<>();
for (PartitionInfo par : topicPartitions) {
map.put(new TopicPartition(TOPIC_NAME, par.partition()),fetchDataTime);
}
Map<TopicPartition, OffsetAndTimestamp> parMap =consumer.offsetsForTimes(map);
for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry :parMap.entrySet()) {
TopicPartition key = entry.getKey();
OffsetAndTimestamp value = entry.getValue();
if (key == null || value == null) continue;
Long offset = value.offset();
System.out.println("partition-" + key.partition() +"|offset-" + offset);
System.out.println();
//根据消费里的timestamp确定offset
if (value != null) {
consumer.assign(Arrays.asList(key));
consumer.seek(key, offset);
}
}
9.新消费组的消费偏移量
当消费主题的是一个新的消费组,或者指定offset的消费方式,offset不存在,那么应该如何消费?
- latest(默认) :只消费自己启动之后发送到主题的消息
- earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于consumer.seekToBeginning(每次都从头开始消费)
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");