opencv学习笔记(8)高斯噪声与高斯模糊

常见噪声

常见的噪声:高斯、泊松和椒盐噪声

高斯分布

大学本科阶段,大二左右一般都会教的,对这个不了解可以出门右转补一下课,可能会方便后续的理解。

高斯噪声的实现

import cv2 as cv
import numpy as np

def Gaussian_noise(image):
    h,w,c = image.shape
    for row in range(h):
        for col in range(w):
            s = np.random.normal(0,20,3)
            b = image[row,col,0]
            g = image[row,col,1]
            r = image[row,col,2]
            image[row,col,0] = np.clip(b+s[0],0,255)
            image[row,col,1] = np.clip(g+s[1],0,255)
            image[row,col,2] = np.clip(r+s[2],0,255)
    cv.imshow("noise image",image)

scr = cv.imread("D:/academic/picture/opencv_data/lena.jpg")
cv.imshow("input image",scr)
Gaussian_noise(scr)
cv.waitKey(0)
cv.destroyAllWindows()

1.对于np.random.normal有疑问的可以参考这篇博客(侵删):
python中的np.random.normal
2.

np.clip(x,a_min,a_max)

相当于:

def clamp(x,a_min,a_max):
	if x<a_min:
		return a_min
	elif x>a_max:
		return a_max
	else:
		return x

加入高斯噪声后效果如下:
在这里插入图片描述

高斯模糊

dst = cv.GaussianBlur(scr,(5,5)0)
cv.imshow("GaussianBlur_image",dst)

效果如下:
在这里插入图片描述
最后附上cv2.GaussianBlur()的参数解析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值