bzoj 1010 [HNOI2008]玩具装箱toy

Description

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1…N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

Input

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

输出最小费用

Sample Input

5 4
3
4
2
1
4
Sample Output

1


【分析】
额…一道略基础的单调队列优化dp,也是斜率优化。非要说成维护凸壳我也没办法…
首先我们可以写朴素状态转移方程,用dp[i]表示前i个物品都装起来所需的最小花费。那么dp[i]=min{dp[j-1]+(sum[i]-sum[j-1]+i-j-L)^2}。非常简单对吧…
由于时间复杂度太高,然后我们来考虑优化。
如果当前枚举到了物品i,我们假设在i之前有两个物品k和j,假设k < j,那么如果将j~i放在一起要比k~i放在一起更优的话,我们可以得到方程
Dp[k-1]+(sum[i]-sum[k-1]+i-k-L)^2>dp[j-1]+(sum[i]-sum[j-1]+i-j-L)^2 ……①
由于二次项内系数太多…所以我们将带有参数i的项和常数项放在一起,即令m=sum[i]-i+L
嗯…很好,下面就是化简了…我在这里不作化简啦…
为了方便表示,我令 xj=sum[j-1]+j,yj=dp[j-1],同理xk=sum[k-1]+k,yk=dp[k-1]。
①式化简后得到 (yj+xj^2)-(yk+xk^2)/(2xj+2xk) < m。 ……②

至此我们推出,如果j,k两物品满足k < j且满足②式,那么j比k更优
在dp的时候,我们用一个单调队列把i之前的物品都存到里面。开始从队头扫描,如果q[h]与q[h+1]两个物品满足②式,那么物品q[h]显然没有q[h+1]优,就可以弹出q[h]了。
当我们想添加一个物品进队列时,我们可以比较 g(q[t-1],q[t])与g(q[t],i) (i为要进队的物品)的大小,g(j,k)代表(yj+xj^2)-(yk+xk^2)/(2xj+2xk)的值。如果g(q[t],i) < m显然可以知道i比q[t]更优,弹出q[t]。如果g(q[t],i)>=m 而且 g(q[t-1],q[t])>g(q[t],i),那么q[t]比i优,但是q[t-1]比q[t]优,还是可以弹出q[t]。

至此,这道题基本解决。时间复杂度O(n),最后提醒一下,一定要注意long long!!!要不一分都不给orz。

这绝对是我写的最长的题解了…谢谢观赏。


【代码】

//bzoj 1010
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define M(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int mxn=50005;
ll n,l,m;
ll dp[mxn],c[mxn],q[mxn],res[mxn];
inline ll get(ll lef,ll rig)
{
    ll K=(dp[rig-1]+(res[rig-1]+rig)*(res[rig-1]+rig)
    -dp[lef-1]-(res[lef-1]+lef)*(res[lef-1]+lef))/
    (2*(res[rig-1]+rig-res[lef-1]-lef));
    return K;
}
int main()
{
    ll i,j,h,t,calc;
    scanf("%lld%lld",&n,&l);
    memset(dp,0x7f7f7f7f,sizeof dp);
    fo(i,1,n) scanf("%lld",&c[i]);
    fo(i,1,n) res[i]=res[i-1]+c[i]; 
    h=1,t=0;
    dp[0]=0;
    fo(i,1,n)
    {
        m=res[i]+i-l;
        while(h<t && get(q[h],q[h+1])<m) h++;
        int tmp=q[h];
        if(!tmp) tmp=1;
        calc=res[i]-res[tmp-1]+i-tmp-l;
        dp[i]=dp[max(tmp-1,0)]+calc*calc;
        dp[i]=min(dp[i],dp[i-1]+(c[i]-l)*(c[i]-l));
        while(h<t && get(q[t-1],q[t])>get(q[t],i)) t--;
        q[++t]=i;
    }
    printf("%lld\n",dp[n]);
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值