Color
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 10383 Accepted: 3378
Description
Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of the necklace can be produced. You should know that the necklace might not use up all the N colors, and the repetitions that are produced by rotation around the center of the circular necklace are all neglected.
You only need to output the answer module a given number P.
Input
The first line of the input is an integer X (X <= 3500) representing the number of test cases. The following X lines each contains two numbers N and P (1 <= N <= 1000000000, 1 <= P <= 30000), representing a test case.
Output
For each test case, output one line containing the answer.
Sample Input
5
1 30000
2 30000
3 30000
4 30000
5 30000
Sample Output
1
3
11
70
629
Source
POJ Monthly,Lou Tiancheng
【分析】
低头!http://blog.csdn.net/acdreamers/article/details/8656247
快速幂写错了!快速幂写错了!快速幂写错了!
白学了!退役了!
【代码】
//poj 2154 color
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define M(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(int i=j;i<=k;i++)
using namespace std;
const int mxn=36005;
bool vis[mxn];
int pri[mxn];
int T,n,p,tot;
inline void init()
{
fo(i,2,36000)
{
if(!vis[i]) pri[++tot]=i;
for(int j=1;j<=tot && i*pri[j]<=36000;j++)
{
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
}
inline int phi(int x)
{
int cnt=x;
for(int i=1;pri[i]*pri[i]<=x;i++)
{
if(x%pri[i]==0)
{
cnt-=cnt/pri[i];
while(x%pri[i]==0) x/=pri[i];
}
}
if(x>1) cnt-=cnt/x;
return cnt%p;
}
inline int ksm(int x,int k)
{
x=x%p;
if(k==0) return 1;
if(k==1) return x;
int tmp=ksm(x,k>>1);
if(k&1) return tmp*tmp%p*x%p;
return tmp*tmp%p;
}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
int ans=0;
scanf("%d%d",&n,&p);
for(int i=1;i*i<=n;i++)
if(n%i==0)
{
ans=(ans+phi(n/i)*ksm(n,i-1))%p;
if(i*i==n) continue;
ans=(ans+phi(i)*ksm(n,n/i-1))%p;
}
printf("%d\n",ans);
}
return 0;
}