【题目】
1875: [SDOI2009]HH去散步
Time Limit: 20 Sec Memory Limit: 64 MB
Submit: 1715 Solved: 831
[Submit][Status][Discuss]
Description
HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但
是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每
天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。 现在给你学校的地图(假设每条路的长度都
是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径
Input
第一行:五个整数N,M,t,A,B。
N表示学校里的路口的个数
M表示学校里的 路的条数
t表示HH想要散步的距离
A表示散步的出发点
B则表示散步的终点。
接下来M行
每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。
数据保证Ai != Bi,但不保证任意两个路口之间至多只有一条路相连接。
路口编号从0到N -1。
同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。
答案模45989。
N ≤ 20,M ≤ 60,t ≤ 2^30,0 ≤ A,B
Output
一行,表示答案。
Sample Input
4 5 3 0 0
0 1
0 2
0 3
2 1
3 2
Sample Output
4
HINT
Source
Day1
【分析】
这题如果是从点的角度考虑的话,我们可以得出结论,不可做。
那么考虑边的转移
如果一条边1:u->v,存在一条边2:v->x,而且这两条边不是互为反向边,那么边1可以向边2转移,扔到转移矩阵中去。
初始化A的出边为1,转移完毕如果一条边的to为B,那么累加进入答案。
【代码】
//bzoj 1875 [SDOI2009]HH去散步
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 45989
#define ll long long
#define M(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int mxn=122;
int n,m,t,A,B,cnt,sum,head[mxn];
struct edge {int from,to,next;} f[mxn<<1];
inline void add(int u,int v)
{
f[++cnt].from=u,f[cnt].to=v,f[cnt].next=head[u],head[u]=cnt;
}
struct matrix
{
int a[mxn][mxn];
matrix operator * (const matrix &x) const
{
int i,j,k;
matrix res;
fo(i,1,cnt)
fo(j,1,cnt)
{
res.a[i][j]=0;
fo(k,1,cnt)
res.a[i][j]=(res.a[i][j]+a[i][k]*x.a[k][j])%mod;
}
return res;
}
}ans,b;
int main()
{
int i,j,u,v;
scanf("%d%d%d%d%d",&n,&m,&t,&A,&B),t--;
if(t<0) return puts("0"),0;
while(m--)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
fo(i,1,cnt)
{
u=f[i].to;
for(j=head[u];j;j=f[j].next)
if((i+((i&1)?1:-1))!=j)
b.a[i][j]=1;
}
for(i=head[A];i;i=f[i].next) ans.a[1][i]=1;
while(t)
{
if(t&1) ans=ans*b;
b=b*b,t>>=1;
}
fo(i,1,cnt) if(f[i].to==B) sum=(sum+ans.a[1][i])%mod;
printf("%d\n",sum);
return 0;
}