A tutorial on Matrix

These pages are a collection of my personal review on Matrix Analysis, mainly about matrices and something relating to them, such like the Space, Norm, etc. They are really the things that matter in data science and almost all the machine learning algorithms. Hence, I collected them in this form for the convenience of anyone who wants a quick desktop or mobile reference.


1 Algebraic and Analytic Structures

1.1 Group

1)2)3)(ab)c=a(bc)ea=ae=aax=xa=e

1.2 Abelian

1)4)2)3)ab=ba

1.3 Ring (R,+) or (R,)

1)2)3)(R,+)isanAbeliangroup.(ab)c=a(bc)a(b+c)=ab+ac,(b+c)a=ba+ca

1.4 Equivalence Relation

1)2)3)aaabimpliesbaabandbcimpliesac

1.5 Partial Order

1)2)3)aaabandbcimpliesacabandbaimpliesa=b

1.6 Majorization and Weak majorization

1)Marjorization

xy==[x1,x2,...,xn]Rn[y1,y2,...,yn]Rn

For x,yRn , we say that x is majorized by y, denoted by xy , if

j=1kxjj=1nxj=j=1kyjforkin[1:n1]j=1nyj

2)Weak Majorization

For x,yRn , we say that x is weak majorized by y, denoted by xy , if

j=1kxjj=1nxjj=1kyjforkin[1:n1]j=1nyj

1.7 Supremum and Infimum

T is a subset of poset (S,), a is said to be a supremum of T, denoted by sup T , if

1)2)3)aSbaforallbTacforanyotherupperboundc

a is said to be a infimum of T, denoted by inf T , if

1)2)3)aSabforallbTcaforanyotherlowerboundc

1.8 Lattice

Let a,bS , then inf{ a,b } is also denoted by ab , called the meet of a,b ; and sup { a,b } is denoted by ab , called the join of a,b. Then, a poset (S,) is called a lattice if ab and ab exist for all a,bS .

2 Linear Spaces

2.1 Linear Space

A set χ is said to be a linear space(or vector space) over a filed F , if

1)2)3)4)5)αxχ,whenαF,xF,itisaclosureproperty(αβ)x=α(βx)α(x+y)=αx+αy(α+β)x=αx+βx1x=x

2.2 Dimension and Basis

Several vectors x1,x2,...xmχ are said to be linear independent if

α1x1+α2x2+...+αmxm=0

implies α1=α2=...=αm=0 . ‘m’ is the dimension of χ , x1,x2,...,xm is the basis of χ .
dimdimdimdimdimRn=nRm×n=mnCn=nCm×n=mnHn=n2

2.3 Null Space and Range Space

N(A)R(A)=={xχ:Ax=0}{ax:xχ}

2.4 Normed Linear Space

For vectors:

xpx==(i=1n|xi|p)1pmax|xi|

For matrices:

A1A2ApA=max1jmi=1naij=σ1(A)=supxp=1Axp=max1inj=1maij

where σ1 is the maximum sigular value of A.

2.5 Inner Prouduct Space

x,y=xy

A linear space with an inner product is called an inner product space.

2.6 Gram Schimidt Orthonormalization

q1q2qi===a1a1a2a2,q1q1a2a2,q1q1aii1j=1ai,qjqjaii1j=1ai,qjqj

3 Matrix Factorization and Decompositions

3.1 Eigenvalues and Eigenvectors

The characteristic polynomial of A is defined to be

CA(z)=det(zIA)

A complex number λ satisfying CA(λ)=0 is called an eigenvalue of A, and the vector xCn such that Ax=λx is called the right eigenvector of A corresponding to the eigenvalue λ .

3.2 Spectrum

Spectrum is the set of eigenvalues of A.
Spectral Radius ρ(A) is the maximum modulus of the eigenvalues of A, i.e., ρ(A)=max|λi| .

3.3 Diagonalization

cA(z)=(zλ1)n1(zλ2)n2...(zλnl)nl

where ni1 and li=1ni=n , ni is the algebraic multiplicity of λi .

Eigenspace: εi=N(AλiI)
Generalized Eigenspace: εi˜=N[(AλiI)ni]

3.4 Jordan Canonical Form

Choosing arbitrary basis from εi˜ to form P, and tranfer A by P1AP to get a Jordan Canonical Form. We can also get P from:

Aμ1Aμ2Aμ3===λμ1λμ2+μ1λμ3+μ2

3.5 QR Factorization

An×m=QR

QR==[q1q1...qm]QA

3.6 Schur Factorization

Tn×n=UAn×nU

U: unitary matrix
A: with eigenvalues λ1,...,λn
T: an upper triangular matrix

3.7 SVD Decomposition

Am×n=USm×nV

The left -singular vectors of A(columns of U) are a set of orthonormal eigenvectors of AA .
The right-singular vectors of A(columns of V) are a set of orthonormal eigenvectors of AA .
The diagnal entries of S are the square roots of the non-negative eigenvalues of both AA and AA , known as the singular values.
e.g. For a square matrix T
T===QAQQUSVQ(QU)S(QV)

3.8 Spectral Decompostion

A=i=1kλiGi

P1AP=diag{λ1,λ2,...,λk}

A====Pdiag{λ1,λ2,...,λk}P1[α1,α2,...αk]λ1λ2λkβT1βT2βTkλ1α1βT1+λ2α2βT2+...+λkαkβTkλ1G1+λ2G2+...+λkGk

where Gk=αiβTi . There are some properties of Gi :
GiG2iGiGj===IGi0

3.9 Matrix Functions

sin(A+B)sin2Acos(A+B)cos2A====sinAcosB+cosAsinB2sinAcosAcosAsinB+sinAcosBcos2Asin2A1

holds when AB=BA,A,BCm×n .

4 Matrix Analysis

4.1 Positive Definite

a)b)c)d)positivedefinite:positivesemidefinite:negativedefinite:negativesemidefinite:xxxxAx>0A>0Ax0A0Ax<0A<0Ax0A0

The following three statements are equivalent.

a)b)c)A>0σ(A)>0deta11...ai1......a1i...ai1

4.2 Rayleigh Quotient

For A, let λmin=λ1λ2...λn=λmax , 1i1i2...ikn are integers, xi1,xi2,...xik are orthonormal vectors such that Axip=λipxip , S=span{xi1,xi2,...,xik} ,then we have

a)b)λi1xAxλikforxSλminxAxλmaxforxCn

4.3 Hermitian Matrix

Hermitian Matrix: A=A
Skew-Hermitian: A=A
Theorem: If A is a Hermitian Matrix, then
a) xAx is real for all xCn .
b) λ(A) are real.
c) SAS is Hermitian.

5 Special Topics

5.1 Stochastic Matrix

A nonnegative matrix Sn×n is said to be a stochastic matrix if each of its row sums is equal to one. S satisfies Se=e , which means the eigenvalue and eigenvector of S are respectively 1 and [1...1]T.Obviously , if S and T are stochastic, so is ST .


END

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
贝叶斯网络学习教程是一种介绍贝叶斯网络概念和应用的教育材料。贝叶斯网络是一种概率图模型,用于建模和推理关于变量之间的概率依赖关系的方法。 这个教程将引导学习者了解贝叶斯网络的基本原理和构建模型的步骤。首先,它会介绍概率论和贝叶斯定理的基本概念。学习者将了解到如何使用概率分布来描述变量之间的关系,以及如何使用贝叶斯定理来更新我们对变量的信念。 接下来,教程会介绍贝叶斯网络的结构和参数估计。学习者将学习如何构建一个贝叶斯网络,通过定义变量之间的依赖关系来表示概率分布。此外,他们还将了解如何从数据中学习网络的参数,以便通过观察到的数据来推断未观察到的变量。 然后,教程会介绍贝叶斯网络的推断和预测。学习者将学会如何使用贝叶斯网络来进行推断,即根据已知的证据来计算变量的后验概率。他们还将了解如何使用贝叶斯网络进行预测,即根据已观察到的变量来预测未观察到的变量的概率分布。 最后,教程会讨论贝叶斯网络的应用领域和案例研究。学习者将了解到贝叶斯网络在人工智能、医学、金融等领域的广泛应用,并了解一些实际问题的解决方案。 总而言之,贝叶斯网络学习教程是一个全面的学习资源,可以帮助学习者掌握贝叶斯网络的基本原理、构建模型的方法和应用技巧。通过这个教程,学习者将能够理解和应用贝叶斯网络来解决各种实际问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值