CART决策树的sklearn实现及其GraphViz可视化

本文介绍了如何使用Python的sklearn库构建CART决策树,并结合GraphViz进行可视化。在遇到AttributeError和InvocationException错误后,通过安装pydotplus和配置GraphViz解决了问题。最终,生成的决策树清晰地展示了模型如何利用葡萄酒数据集的Flavanoids、Color Intensity和Proline属性进行分类。测试结果显示,模型的准确率大约在85%-95%之间,虽然不高,但具有良好的可解释性和快速的运算速度。
摘要由CSDN通过智能技术生成

这一部分,我使用了sklearn来调用决策树模型对葡萄酒数据进行分类。在此之外,使用Python调用AT&T实验室开源的画图工具GraphViz软件以实现决策树的可视化。

from sklearn.datasets import load_iris
from sklearn import tree
from sklearn.externals.six import StringIO
import pydot
dot_data = StringIO()
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
tree.export_graphviz(clf, out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("iris.pdf")

这是一段基本的利用pydot+GraphViz实现决策树可视化的代码。由于缺少pydot库,直接无法执行,我们在命令行中pip install pydot后再执行,发现报错:

AttributeError: ‘list’ object has no attribute ‘write_pdf’

在StackOverflow中搜索此问题,发现我们要将pydot改为pydotplus,好吧&

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值