这一部分,我使用了sklearn来调用决策树模型对葡萄酒数据进行分类。在此之外,使用Python调用AT&T实验室开源的画图工具GraphViz软件以实现决策树的可视化。
from sklearn.datasets import load_iris
from sklearn import tree
from sklearn.externals.six import StringIO
import pydot
dot_data = StringIO()
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
tree.export_graphviz(clf, out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("iris.pdf")
这是一段基本的利用pydot+GraphViz实现决策树可视化的代码。由于缺少pydot库,直接无法执行,我们在命令行中pip install pydot后再执行,发现报错:
AttributeError: ‘list’ object has no attribute ‘write_pdf’
在StackOverflow中搜索此问题,发现我们要将pydot改为pydotplus,好吧&

本文介绍了如何使用Python的sklearn库构建CART决策树,并结合GraphViz进行可视化。在遇到AttributeError和InvocationException错误后,通过安装pydotplus和配置GraphViz解决了问题。最终,生成的决策树清晰地展示了模型如何利用葡萄酒数据集的Flavanoids、Color Intensity和Proline属性进行分类。测试结果显示,模型的准确率大约在85%-95%之间,虽然不高,但具有良好的可解释性和快速的运算速度。
最低0.47元/天 解锁文章
657

被折叠的 条评论
为什么被折叠?



