阻抗匹配、二端口网络分析与微波传输线
1. 阻抗匹配与二端口网络分析
1.1 S 参数计算示例
在某些情况下,可根据给定条件计算 S 参数。例如,当 (f_G = \Gamma_L = 0) 时,由 (L_i = 6.0 = 10 \log \frac{1}{|S_{21}|^2}) 可推出 (|S_{21}| = 0.50)。若 (S_{11} = S_{22} = 0),(S_{21} = S_{12} = j |S_{m}|),且 (|\Gamma_G| = |\Gamma_L| = 0.20),则相关公式会简化。(\varphi_G + \varphi_L) 取不同值时,(|S_{21}|) 有不同的上下界。当 (\varphi_G + \varphi_L = 0) 时,(|S_{21}| = 0.527);当 (\varphi_G + \varphi_L = \pi) 时,(|S_{21}| = 0.476)。所以,(|S_{21}|) 的取值范围是 (0.476 < |S_{21}| < 0.527),在 (|\Gamma_G| = |\Gamma_L| = 0.20) 时,推导值的不确定度约为 ±5%。
1.2 相关应用
S 参数和流图在研究测量系统误差以及分析晶体管放大器和振荡器方面是有用的分析技术。
1.3 问题求解
以下是一系列关于阻抗匹配和二端口网络分析的问题:
|问题编号|问题描述|
| ---- | ---- |
|4 - 1|使用串联电容设计匹配网络,确定特定频率下的参数及不同频率的输入 SWR,并与电感匹配结果比较|
|4 -
超级会员免费看
订阅专栏 解锁全文
3460

被折叠的 条评论
为什么被折叠?



