策略迭代的指数下界:深入解析与示例探讨
在决策过程中,我们常常需要寻找最优策略以实现某种目标,比如最大化总奖励或者平均奖励。策略迭代就是一种用于解决这类优化问题的有效方法。本文将详细介绍策略迭代的原理、相关的最优性方程,以及如何构造示例来展示贪心策略迭代在总奖励准则下可能需要指数级的步骤。
1. 最优性方程
对于每个状态的价值,可以通过最优性方程的解来表征。不同的最优性准则对应不同的方程:
- 总奖励准则 :对于每个状态 ( s ),其最优性方程为
[ V(s) = \max_{a \in A_s} \left{ r(s, a) + \sum_{s’ \in S} p(s’|s, a) \cdot V(s’) \right} ]
这里,( r(s, a) ) 表示在状态 ( s ) 采取动作 ( a ) 获得的奖励,( p(s’|s, a) ) 是从状态 ( s ) 采取动作 ( a ) 转移到状态 ( s’ ) 的概率。
- 平均奖励准则 :需要同时求解两种类型的最优性方程。
- 增益方程 :
[ G(s) = \max_{a \in A_s} \left{ \sum_{s’ \in S} p(s’|s, a) \cdot G(s’) \right} ]
- 偏差方程 :设 ( M_s = { a \in A_s : G(s) = \sum_{s’ \in S} p(s’|s, a) \cdot G(s’) } ) 是满足状态 ( s ) 增益方程的动作集合,则偏差方程为
超级会员免费看
订阅专栏 解锁全文
27

被折叠的 条评论
为什么被折叠?



