76、策略迭代的指数下界:深入解析与示例探讨

策略迭代的指数下界:深入解析与示例探讨

在决策过程中,我们常常需要寻找最优策略以实现某种目标,比如最大化总奖励或者平均奖励。策略迭代就是一种用于解决这类优化问题的有效方法。本文将详细介绍策略迭代的原理、相关的最优性方程,以及如何构造示例来展示贪心策略迭代在总奖励准则下可能需要指数级的步骤。

1. 最优性方程

对于每个状态的价值,可以通过最优性方程的解来表征。不同的最优性准则对应不同的方程:
- 总奖励准则 :对于每个状态 ( s ),其最优性方程为
[ V(s) = \max_{a \in A_s} \left{ r(s, a) + \sum_{s’ \in S} p(s’|s, a) \cdot V(s’) \right} ]
这里,( r(s, a) ) 表示在状态 ( s ) 采取动作 ( a ) 获得的奖励,( p(s’|s, a) ) 是从状态 ( s ) 采取动作 ( a ) 转移到状态 ( s’ ) 的概率。
- 平均奖励准则 :需要同时求解两种类型的最优性方程。
- 增益方程
[ G(s) = \max_{a \in A_s} \left{ \sum_{s’ \in S} p(s’|s, a) \cdot G(s’) \right} ]
- 偏差方程 :设 ( M_s = { a \in A_s : G(s) = \sum_{s’ \in S} p(s’|s, a) \cdot G(s’) } ) 是满足状态 ( s ) 增益方程的动作集合,则偏差方程为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值