TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs

TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs

Neurips 24

推荐指数: #paper/⭐⭐⭐#​

提供了可以刷的时序知识图谱和时序异构图

代码地址:JuliaGast/TGB2: Temporal Graph Benchmark project repo

动机

图结构数据学习在推荐系统、知识库补全及分子学习等领域广泛应用。现实中的关系数据通常具有动态演变的特性,且包含多种类型的关系(多关系时序图),能够捕捉复杂的交互模式和时序依赖。近年来,针对多关系时序图的未来链路预测方法不断涌现,主要包括时序知识图谱(TKGs)和时序异构图(THGs)的预测技术,这些方法从多关系数据中提取丰富信息,与单关系时序图的研究形成明显区别。

然而,多关系时序图的基准测试面临两大挑战:

  1. 评估标准不一致:不同方法采用的评价指标和实验设置差异较大,导致结果可比性低;
  2. 数据集规模受限:现有公开数据集规模较小且多样性不足,难以全面验证模型性能。

贡献:

  1. 新的超大数据集
  2. 真实且可重复的评估
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值