TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
Neurips 24
推荐指数: #paper/⭐⭐⭐#
提供了可以刷的时序知识图谱和时序异构图
代码地址:JuliaGast/TGB2: Temporal Graph Benchmark project repo
动机
图结构数据学习在推荐系统、知识库补全及分子学习等领域广泛应用。现实中的关系数据通常具有动态演变的特性,且包含多种类型的关系(多关系时序图),能够捕捉复杂的交互模式和时序依赖。近年来,针对多关系时序图的未来链路预测方法不断涌现,主要包括时序知识图谱(TKGs)和时序异构图(THGs)的预测技术,这些方法从多关系数据中提取丰富信息,与单关系时序图的研究形成明显区别。
然而,多关系时序图的基准测试面临两大挑战:
- 评估标准不一致:不同方法采用的评价指标和实验设置差异较大,导致结果可比性低;
- 数据集规模受限:现有公开数据集规模较小且多样性不足,难以全面验证模型性能。
贡献:
- 新的超大数据集
- 真实且可重复的评估