Homophily Related-Adaptive Hybrid GraphFilter for Multi View Graph Clustering.md

论文发表于:AAAI 2024
推荐指数: #paper/⭐⭐⭐
代码:ZichenWen1/AHGFC: The source code for “Homophily-Related: Adaptive Hybrid Graph Filter for Multi-View Graph Clustering” (github.com)

问题引入

问题:当前聚类基于图的同配性假设,只关注了图的同配性,即:较多的关注了低频信息而忽略了高频信息
通过多视图自适应混合图过滤器,使得图的低频和高频数据更具有区分性,从而综合考量设计了图的联合相似度矩阵

模型

重构相似性矩阵

首先,我们利用自编码器将X和A映射为:
Z x = f x ( X ; θ x ) , Z a = f a ( A ; θ a ) \mathbf{Z}_x=f_x(\mathbf{X};\theta_x),\quad\mathbf{Z}_a=f_a(\mathbf{A};\theta_a) Zx=fx(X;θx),Za=fa(A;θa)
由于输入矩阵A可能是同配,异配,或者混合的,我们重构了图联合矩阵通过下面的方式:
Z = Z a Z x T . \mathbf{Z}=\mathbf{Z}_a\mathbf{Z}_x^T. Z=ZaZxT.
在这里,图联合矩阵是节点特征和邻居特征共同组成的.它将更可靠的去取使用初始图.此外,受消息传播机制的驱动,多阶聚合可以平滑图信号,我们聚合矩阵Z来获得图联合矩阵:
S = Z Z T \mathbf{S=ZZ^{T}} S=ZZT
自此,
S = ( Z a Z x T ) ( Z a Z x T ) T , \mathbf{S}=(\mathbf{Z}_a\mathbf{Z}_x^T)(\mathbf{Z}_a\mathbf{Z}_x^T)^T, S=(ZaZxT)(ZaZxT)T,
Z的相似性将得到加强,低频高频信号可以得到有效分离
文章配图
吐槽:这图好丑啊

LP,HP以及自适应hybrid 图过滤

经验上,低通和高通过滤与拉普拉斯矩阵/亲和性矩阵相关,常用的两种:

对称形式:

亲和性矩阵A(邻接矩阵?仿射矩阵?中文到底叫啥)和图拉普拉斯矩阵:
L P = A s y m X , H P = L s y m X , \mathbf{LP=A_{sym}X,}\quad\mathbf{HP=L_{sym}X,} LP=AsymX,HP=LsymX,
A s y m = D − 1 / 2 A D − 1 / 2 , L s y m = I − A s y m \mathbf{A}_{sym}=\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2},\mathbf{L}_{sym}=\mathbf{I}-\mathbf{A}_{sym} Asym=D1/2AD1/2,Lsym=IAsym

不对称形式:

另外一种是随机游走形式:
L P = A r w X , H P = L r w X , \mathbf{LP=A_{rw}X,\quad HP=L_{rw}X,} LP=ArwX,HP=LrwX,
A r w = D − 1 A , L r w = I − A r w . \mathrm{A}_{rw}=\mathrm{D}^{-1}\mathrm{A},\mathrm{L}_{rw}=\mathrm{I}-\mathrm{A}_{rw}. Arw=D1A,Lrw=IArw.
根据前面介绍的图傅里叶变换,图形信号x和卷积核f的卷积运算如下:
f ∗ x = U ( ( U T f ) ⊙ ( U T x ) ) = U g θ U T x , f*x=\mathbf{U}((\mathbf{U}^Tf)\odot(\mathbf{U}^Tx))=\mathbf{U}g^\theta\mathbf{U}^Tx, fx=U((UTf)(UTx))=UgθUTx,
其中 ⊙ \odot 表示handmard 积, g θ = U T f g^{\theta}=\mathbf{U}^{T}f gθ=UTf表示在光谱领域卷积和f
如果我们用随机游走A作为卷积核,那么图信号x可以被过滤:
A r w ∗ x = U ( g L θ ) U T x , L r w ∗ x = U ( g H θ ) U T x \mathbf{A}_{rw}*x=\mathbf{U}(g_L^\theta)\mathbf{U}^Tx,\quad\mathbf{L}_{rw}*x\quad=\mathbf{U}(g_H^\theta)\mathbf{U}^Tx Arwx=U(gLθ)UTx,Lrwx=U(gHθ)UTx
g L θ g^{\theta}_{L} gLθ g L θ g^{\theta}_{L} gLθ表示谱领域的A和L.
g L θ = I − Λ   a n d   g H θ = Λ g_L^\theta=\mathbf{I}-\mathbf{\Lambda}\mathrm{~and~}g_H^\theta=\mathbf{\Lambda} gLθ=IΛ and gHθ=Λ
因此,我们可以重写上述式子的结果:
U ( g L θ ) U T x = ∑ i ( 1 − λ i ) u i u i T x , U ( g H θ ) U T x = ∑ i λ i u i u i T x . \begin{aligned} &\mathbf{U}(g_L^\theta)\mathbf{U}^Tx =\sum_i(1-\lambda_i)u_iu_i^Tx, \\ &\mathbf{U}(g_H^\theta)\mathbf{U}^Tx =\sum_i\lambda_iu_iu_i^Tx. \end{aligned} U(gLθ)UTx=i(1λi)uiuiTx,U(gHθ)UTx=iλiuiuiTx.
高通滤波器,低通滤波器通常用于获得高频和低频信号,当 1 < λ < 2 1<\lambda<2 1<λ<2获得高频信号, 0 < λ < 1 0<\lambda<1 0<λ<1获得低频信号.
我们为了同时捕获两者,设计了自适应混合图滤波器:
H h y b r i d = h r ⋅ ( S r w ) k X + ( 1 − h r ) ⋅ ( I − S r w ) k X , \mathbf{H_{hybrid}}=hr\cdot(\mathbf{S_{rw}})^k\mathbf{X}+(1-hr)\cdot(\mathbf{I}-\mathbf{S_{rw}})^k\mathbf{X}, Hhybrid=hr(Srw)kX+(1hr)(ISrw)kX,
hr表示可学习参数来衡量同配性,用于控制混合滤波器的自适应过程

用同配比来调节

当同配信息占据主导地位时,低通滤波器发挥作用.当异配性占主要作用时,高通滤波器占主要作用.我们选择用伪标签和邻接信息来计算同配比(hr):
h r = S U M ( A v ⊙ P P T − I ) S U M ( A v − I ) hr=\frac{\mathrm{SUM}(\mathbf{A}^v\odot\mathbf{PP}^T-\mathbf{I})}{\mathrm{SUM}(\mathbf{A}^v-\mathbf{I})} hr=SUM(AvI)SUM(AvPPTI)
⊙ \odot 是hadamard product, P ∈ { 0 , 1 } n × c \mathbf{P} \in \{0,1\}^{n\times c} P{0,1}n×c是伪标签的one-hot编码.hr还可以响应图上相似度和不想死的信息的比例.其计算开销小.
H ‾ = ∑ v = 1 V ω h v H v , where ω h v = ( e v a v max ⁡ ( e v a 1 , e v a 2 , ⋯   , e v a V ) ) ρ , \begin{aligned} \overline{\mathbf{H}}=& \sum_{v=1}^V\omega_h^v\mathbf{H}^v,\text{where} \\ &\omega_h^v=(\frac{eva^v}{\max{(eva^1,eva^2,\cdots,eva^V)}})^\rho, \end{aligned} H=v=1VωhvHv,whereωhv=(max(eva1,eva2,,evaV)evav)ρ,
其中,eva是共识特征 H ˉ \bar{\mathbf{H}} Hˉ和H的评估.超参 ρ \rho ρ调整整个视图权重的光滑程度.对于每个共识结果,我们应用k-means来运算最终结果,并运用kl散度来优化聚类结果

损失函数

L R e c = l ( f x ( X ; θ x ) ; X ) + l ( f a ( A ; θ a ) ; A ) , \mathcal{L}_{Rec}=l(f_x(\mathbf{X};\theta_x);\mathbf{X})+l(f_a(\mathbf{A};\theta_a);\mathbf{A}), LRec=l(fx(X;θx);X)+l(fa(A;θa);A),
L K L = ∑ v = 1 V K L ( P ‾ ∥ Q v ) + ∑ v = 1 V K L ( P v ∥ Q v ) + K L ( P ‾ ∥ Q ‾ ) , \mathcal{L}_{KL}=\sum_{v=1}^VKL(\mathbf{\overline{P}}\|\mathbf{Q}^v)+\sum_{v=1}^VKL(\mathbf{P}^v\|\mathbf{Q}^v)+KL(\mathbf{\overline{P}}\|\mathbf{\overline{Q}}), LKL=v=1VKL(PQv)+v=1VKL(PvQv)+KL(PQ),
最终,损失函数被设计为:
L = γ r e c L R e c + γ k l L K L , \mathcal{L}=\gamma_{rec}\mathcal{L}_{Rec}+\gamma_{kl}\mathcal{L}_{KL}, L=γrecLRec+γklLKL,

结果:

文章配图

总结:

优点:这篇用了相似性矩阵和特征相似度生成的相似性矩阵,以及聚类伪标签来设计同配比,利用视图特征和共识特征的权重比去聚合不同阶信息的特征,思路很直观,挺有意思的.(创新点:同配比,视图特征和共识特征的权重比聚合特征)
缺点:写的有点好,结果让人难以相信.在权重参数的确定时引入超参,对其适用性是否有一丢丢怀疑

  • 15
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值