pandas 排序 和 自定义排序

 pandas 自定义排序:  这个还是功能很强大的, 按照指定的顺序进行排序

import pandas as pd
#数据集
df = pd.DataFrame({'word':['a','b','c'], 'num':[2,1,3]})
#自定义排序顺序,此顺序对应为升序ascending=True
list_sorted = ['b', 'a', 'c']
#对相关列进行自定义排序
df['word'] = df['word'].astype('category').cat.set_categories(list_sorted)
#结果
df_sortes = df.sort_values(by=['word'], ascending=True)

一、sort_values()函数的具体参数

  • 用法:
    DataFrame.sort_values(by=‘##’,axis=0,ascending=True, inplace=False, na_position=‘last’)

参数    说明

by    指定列名(axis=0或’index’)或索引值(axis=1或’columns’)

axis    若axis=0或’index’,则按照指定列中数据大小排序;若axis=1或’columns’,则按照指定索引中数据大小排序,默认axis=0

ascending    是否按指定列的数组升序排列,默认为True,即升序排列

inplace    是否用排序后的数据集替换原来的数据,默认为False,即不替换

na_position    {‘first’,‘last’},设定缺失值的显示位置

 

二、sort_values用法举例
  • 创建数据框

  • #利用字典dict创建数据框
    import numpy as np
    import pandas as pd
    df=pd.DataFrame({'col1':['A','A','B',np.nan,'D','C'],
                     'col2':[2,1,9,8,7,7],
                     'col3':[0,1,9,4,2,8]
    })
    print(df)
    
    >>>
      col1  col2  col3
    0    A     2     0
    1    A     1     1
    2    B     9     9
    3  NaN     8     4
    4    D     7     2
    5    C     7     8
    
  • 依据第一列排序,并将该列空值放在首位

  • #依据第一列排序,并将该列空值放在首位
    print(df.sort_values(by=['col1'],na_position='first'))
    >>>
      col1  col2  col3
    3  NaN     8     4
    0    A     2     0
    1    A     1     1
    2    B     9     9
    5    C     7     8
    4    D     7     2
    
  • 依据第二、三列,数值降序排序

#依据第二、三列,数值降序排序
print(df.sort_values(by=['col2','col3'],ascending=False))
>>>
  col1  col2  col3
2    B     9     9
3  NaN     8     4
5    C     7     8
4    D     7     2
0    A     2     0
1    A     1     1

 

  • 根据第一列中数值排序,按降序排列,并替换原数据

#根据第一列中数值排序,按降序排列,并替换原数据
df.sort_values(by=['col1'],ascending=False,inplace=True,
                     na_position='first')
print(df)
>>>
  col1  col2  col3
3  NaN     8     4
4    D     7     2
5    C     7     8
2    B     9     9
1    A     1     1
0    A     2     0
  • 按照索引值为0的行,即第一行的值来降序排序

x = pd.DataFrame({'x1':[1,2,2,3],'x2':[4,3,2,1],'x3':[3,2,4,1]}) 
print(x)
#按照索引值为0的行,即第一行的值来降序排序
print(x.sort_values(by =0,ascending=False,axis=1))
>>>
   x1  x2  x3
0   1   4   3
1   2   3   2
2   2   2   4
3   3   1   1
   x2  x3  x1
0   4   3   1
1   3   2   2
2   2   4   2
3   1   1   3

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值